Theory of Measurement

Tuan V. Nguyen Professor and NHMRC Senior Research Fellow Garvan Institute of Medical Research University of New South Wales Australia

Overview

- Some concepts of measurement
- Methods for assessment of reliability
- Flawed methods
- Consequences of measurement error
- Control of measurement error
- Summary

Three concepts about science

Classificatory – Phân loại

place objects within a certain class

Comparative – So sánh

relationships between objects (warmer/cooler)

Prediction – Tiên đoán

evolution from the comparative concept

The criteria of "science"

Science	Pseudoscience
Logic, experimental evidence	Belief, loyalty
Results are repeatable	Results are <i>not</i> repeatable
Falsiability	Not falsifiable
Peer-reviewed journals	Not in peer reviewed journals
Evolution / learn from mistakes	Constant, unchanged belief

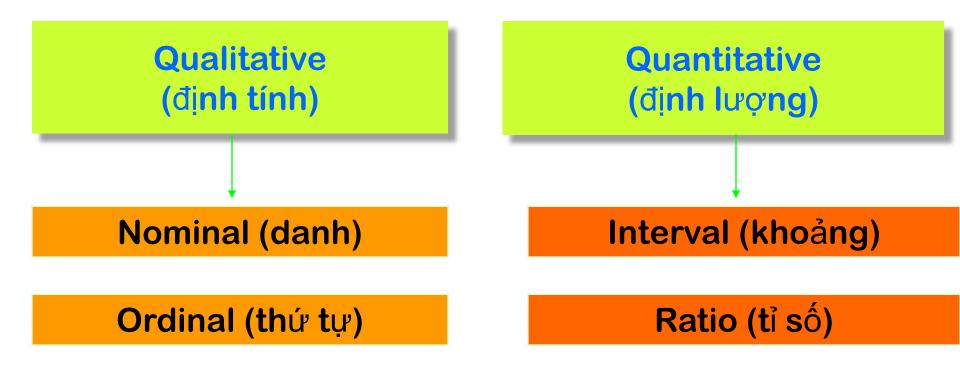
Theoretical vs empirical level (Lí thuyết và thực nghiệm)

Theoretical level

Empirical level

Latent construct:

tasteless, anxiety, intelligence, bone strength, etc.


Observed indicator:

test score, measured values.

Measurements

- The assigning of numbers to the values of a variable (SS Stevens, Science 1946;103:677-80)
- Rules specify procedures to assign numbers to values

Types of measurement

Qualitative measurements

Nominal level

- Classification
- A set of objects can be classified into exhaustive, mutually exclusive and unique symbol
- Ex: religion, sex, location, etc

Ordinal level

- Classification + Ordering
- A set of numbers can be assigned rank values and nothing more.
- Ex: socio-economic status, education, levels of satisfaction, bitterness, etc

Quantitative measurements

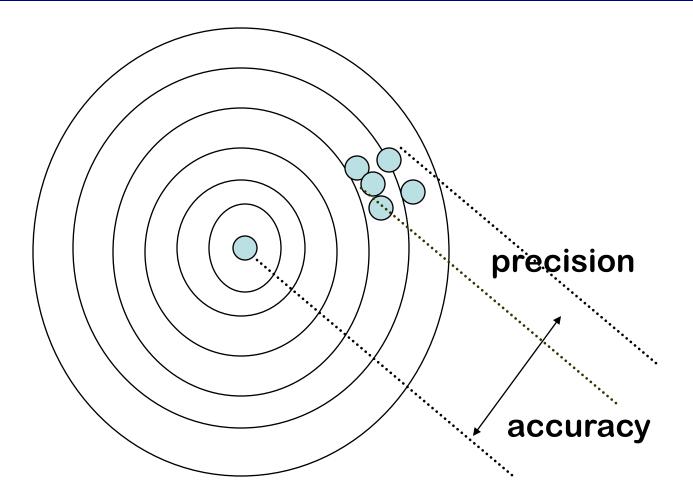
Interval level

- Classification + Ordering + Standard distance
- A set of objects can be described by units that indicate how far one case is from another case
- Ex: temperature

Ratio level

- Classification + Ordering + Standard distance + Natural zero
- Quantitative variable with natural zero
- Ex: income, age, weight, bone mineral density

Criteria of measurements


• Validity measures what it purports to

 Accuracy - the degree of "truthfulness" of an attribute that is being measured.

• **Reliability** (consistency and repeatability)

• **Sensitivity** to important variation

Accuracy vs reliability (precision) Tính chính xác và độ tin cậy

Measurement error decreases the accuracy of measurement

Evaluation of reliability

Reliability (repeatability, reproducibility)

- **Stability**. Degree of stability exhibited when a measurement is repeated under identical conditions
- Equivalence. Same results by different operators

Evaluation of reliability

Validity (*validus* = *strong*)

- **Constructive validity**. The extent to which the measurement corresponds to theoretical concepts (constructs). *Ex: Bone density changes with advancing age.*
- **Content/Face validity**. The extent to which the measurement incorporates the domain of the phenomenon under study. *Ex: functional health status should encompass activities of daily living, occupation, family, etc.*
- **Criterion validity**. The extent to which the measurement correlates with an external criterion of the phenomenon under study. *Ex: academic aptitude test is validated against subsequent academic performance.*

Assessment of Reliability

Questions of interest

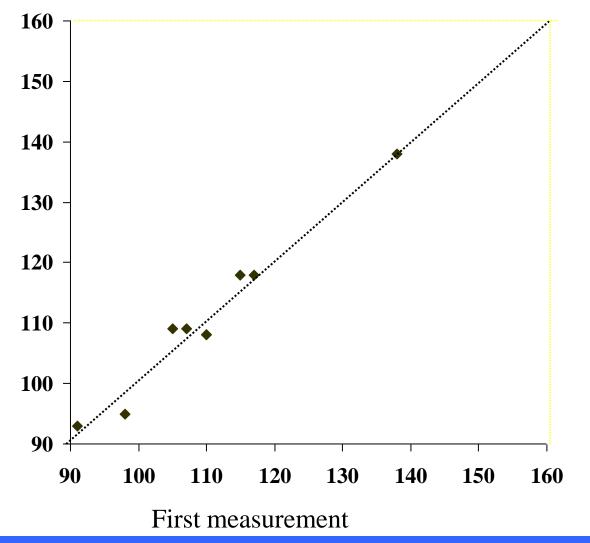
Example: A patient has bone mineral density (BMD) of 0.75 g/cm², is considered osteoporotic, and treated with Alendronate. After two months, BMD is 0.80 g/cm².

- How reliable is the measurement?
- What is the "true" baseline BMD?
- How large should a change be, to be sufficient certain that a true change did occur?
- How can reliability be improved?

Statistical indices of reliability

Quantitative

- Standard error of measurement (độ sai chuẩn)
- Coefficient of variation (hệ số biến thiên)
- Coefficient of reliability (hệ số tin cậy)
- Coefficient of concordance (hệ số đồng hợp)
- Limit of agreement (giới hạn đồng nhất)


Qualitative

- Kappa statistic
- Cronbach' s alpha coefficient
- Coefficient of concordance
- Intraclass correlation coefficient (hệ số phương sai trong một đối tượng)

General case			Bone mineral density			
				Patient	First Se	cond
	<u>Meas</u>	urement		1	117	118
Patient	1	2	. <i>k</i>	2	115	118
1	x ₁₁	x ₁₂ · · ·	X _{1k}	3	110	108
2	<i>X</i> ₂₁	x ₂₂ · · ·	X _{2k}	4	91	93
3	X ₃₁	X ₃₂ · · ·	X _{3k}	5	138	138
				6	85	90
				7	107	109
				8	110	108
N	<i>x</i> _{n1}	x _{n2} · · ·	X _{nk}	9	98	95
				10	105	109
\\/ orde					ing and Dharmoov	A

Plot of 1st and 2nd measurements

2nd measurement

Bone mineral density					
Patient	First	Second	Mean	Variance	
1	117	118	117.5	0.5	
2	115	118	116.5	4.5	
3	110	108	109.0	2.0	
4	91	93	92.0	2.0	
5	138	138	138.0	0.0	
6	85	90	87.5	12.5	
7	107	109	108.0	2.0	
8	110	108	109.0	2.0	
9	98	95	96.5	4.5	
10	105	109	107.0	8.0	
Mean	107.6	108.6	108.1	3.8	

$$SEM = \sqrt{\frac{1}{n} \sum_{i=1}^{n} s_i^2}$$

n = number of subjects

 s_i^2 = intra-subject variances

$$SEM = \sqrt{3.8} = 1.95$$

Interpretation: The difference between a subject's measurement and the "true" value would be expected to be less than 1.96x1.95 = 3.8 for 95% of observations.

Coefficient of variation (CV)

Let X be the overall mean, and S be the within-subject standard deviation.

In our case: X = 108.1, S = sqrt(3.8) = 1.95

Coefficient of variation (CV): interpretation

CV = 1.8%

- All variability between repeated measurements within a subject is 1.8%?
- Assuming Normality:
 - 68% of the differences between measurements lie within
 1.8% of the mean;
 - 95% of the differences between measurements lie within 1.8x2 = 3.6% of the mean

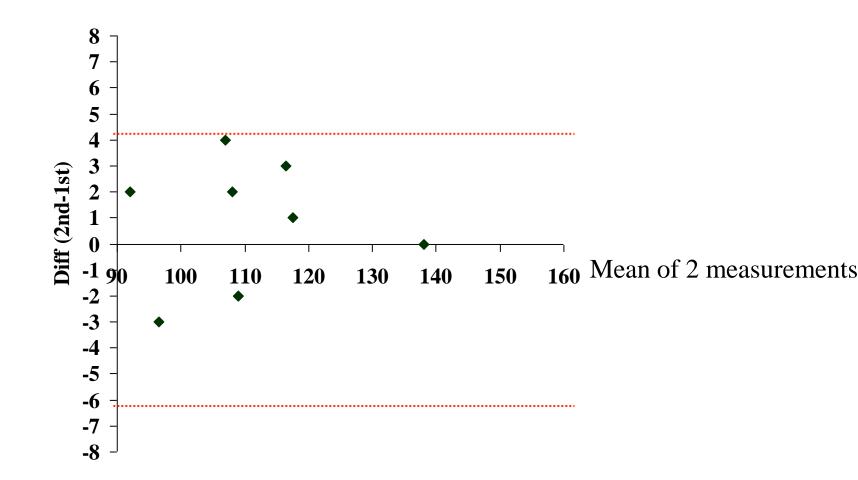
Limits of agreement (LoA)

Assumption: Individual differences are Normally distributed.

Concept: The variability of reproducibility (intrasubject difference) for individual subjects may be expressed as 95% CI of the difference.

$$LoA = \bar{x}_d \pm 1.96S_d$$

Limit of Agreement: estimation


Bone mineral density

Patient	First Sec	cond Diffe	erence
1	117	118	-1
2	115	118	-3
3	110	108	+2
4	91	93	-2
5	138	138	0
6	85	90	-5
7	107	109	-2
8	110	108	+2
9	98	95	+3
10	105	109	-4
Mean	107.6	108.6	-1
SD	14.8	14.2	2.7

 $LoA = -1 \pm 1.96(2.7)$ = -6.3 to +4.3

The repeated BMD measurements may be 6.3 below or 4.3 above an average value for a subject.

Bland-Altman plot

Coefficient of reliability: concept

Observed score = "True" score + Random Error

X = T + EVar(X) = Var(T) + Var(E)

Coefficient of reliability R = var(T) / var(X)

It measures the correlation between the "true" and observed values.

Estimation of reliability coefficient

Analysis of varia	iance
-------------------	-------

Source variance

Between patients 206.3

Within patients 3.8

Var(T) = 206.3 Var(E) = W = 3.8 R = 206.3 / (206.3 + 3.8)= 0.98

Coefficient of concordance: concept

 Take into account the difference in means between first and second measurements

$$C = \frac{2Cov(x_1, x_2)}{s_1^2 + s_2^2 + (\bar{x}_1 - \bar{x}_2)^2}$$

 $Cov(x_1, x_2)$: Covariance between 1st and 2nd measurements s_1, s_2 : Standard deviation of 1st and 2nd measurements. Xbar₁, Xbar₂: sample means

Coefficient of concordance: concept

10 judges were asked to score the bitterness of a wine twice.

Judge	1 st time	2 nd time
1	76	78
2	72	74
3	60	60
4	80	76
5	87	83
6	75	80
7	78	76
8	81	79
9	74	74
10	69	72

Sample statistics 1^{st} 2ndMeans:75.275.2SD:7.36.2Covariance = 41.9

$$2(41.9)$$

$$7.3^2 + 6.2^2 + (75.2 - 75.2)^2$$

$$= 0.90$$

Kappa: a measure of reliability for qualitative measurements

- Two judges score an attribute
- The scores are categorical: A, B and C.
- The outcomes may be summarized as follows

Judge 2' s scores	Judge 1's scores			Total
	A	В	С	
A	n ₁₁	n ₁₂	n ₁₃	N _{1.}
В	n ₂₁	n ₂₂	n ₂₃	N _{2.}
С	n ₃₁	n ₃₂	n ₃₃	N _{3.}
Total	N _{.1}	N _{.2}	N _{.3}	Ν

• Proportion of agreement:

$$P_A = \frac{n_{11} + n_{22} + n_{33}}{N}$$

- Proportion of change agreement: $P_C = \frac{(n_{.1} \times n_{1.}) + (n_{.2} \times n_{2.}) + (n_{.3} \times n_{3.})}{N^2}$
- Kappa statistic

$$\kappa = \frac{P_A - P_C}{1 - P_C}$$

• Variance of κ

$$\operatorname{var}(\kappa) = \frac{P_C + P_C^2 - \sum_{i=1}^3 \left(\frac{n_{i.}^2 n_{.i} + n_{i.} n_{.i}^2}{N^3}\right)}{N(1 - P_C)^2}$$

Kappa: Example of analysis

- Two judges scored the sweetness of 466 ice cream samples
- The scores are: very sweet (A), sweet (B), not sweet (C)
- Results:

Judge 2' s scores	Judge 1's scores			Total
	А	В	С	
A	302	27	5	334
В	40	55	9	104
С	1	9	18	28
Total	343	91	32	466

Kappa: Example of analysis

- Proportion of agreement: $P_A = 0.805$
- Proportion of change agreement: $P_c = 0.575$
- Kappa statistic: $\kappa = 0.54$
- Variance of κ: 0.00161
- Standard error of κ : sqrt(0.00161) = 0.04
- 95% confidence interval of κ : 0.54 ± 2(0.04) = 0.46 to 0.62

Summary

- **Reliability** (reproducibility, repeatability) is different from **accuracy** (validity) concept.
- Analysis of reliability for continuous measurements: coefficient of reliability, coefficient of variation, limit of agreement.
- Analysis of reliability for categorical measurements: Kappa statistic.