Survival Analysis: Kaplan-Meier Method

Tuan V. Nguyen Professor and NHMRC Senior Research Fellow Garvan Institute of Medical Research University of New South Wales Sydney, Australia

What we will learn ...

- Cox's proportional hazards model
- Computing the hazard ratio
- Adjusted survival curves using the Cox PH model
- The meaning of the PH assumption

Leukemia remission data

Leukemia Remission Data

Group 1	l (<i>n</i> = 21)	Group 2(<i>n</i> = 21)			
t(weeks)	log WBC	<i>t</i> (weeks)	log WBC		
6	2.31	1	2.80		
6	4.06	1	5.00		
6	3.28	2	4.91		
7	4.43	2	4.48		
10	2.96	3	4.01		
13	2.88	4	4.36		
16	3.60	4	2.42		
22	2.32	5	3.49		
23	2.57	5	3.97		
6+	3.20	8	3.52		
9+	2.80	8	3.05		
10+	2.70	8	2.32		
11+	2.60	8	3.26		
17+	2.16	11	3.49		
19+	2.05	11	2.12		
20+	2.01	12	1.50		
25+	1.78	12	3.06		
32+	2.20	15	2.30		
32+	2.53	17	2.95		
34+	1.47	22	2.73		
35+	1.45	23	1.97		

group =	c(1,1	.,1,1,1,	1,1	.,1,1,1,	1,1,1,1,1,
1,1,1,1,	,1,1,	0,0,0,0,	,0,	0,0,0,0,	0,
0,0,0,0	,0, 0,	0,0,0,0,	,0)		

time =

c(6,6,6,7,10,13,16,22,23,6,9,10,11,17,19,2 0,25,32,32,34,35,1,1,2,2,3,4,4,5,5,8,8,8,8 ,11,11,12,12,15,17,22,23)

status =

wbc =

c(2.31,4.06,3.28,4.43,2.96,2.88,3.60,2.32, 2.57,3.20,2.80,2.70,2.60,2.16,2.05,2.01,1. 78,2.20,2.53,1.47,1.45,

2.80,5.00,4.91,4.48,4.01,4.36,2.42,3.49,3. 97,3.52,3.05,2.32,3.26,3.49,2.12,1.50,3.06 ,2.30,2.95,2.73,1.97)

dat=data.frame(group,time,status,wbc)

+ denotes censored observation

Kaplan-Meier curves

km = survfit(Surv(time, status==0) ~ group); km
plot(km, lty=c(1,4), lwd=2, xlab="Weeks", ylab="S(t)")
legend("topright", c("Placebo", "Treatment"),
lty=c(1,4), lwd=2)

Leukemia remission data

- Outcome: time (+ status)
- Covariates / predictors: group, wbc

Log-rank test and Cox's model

- Log-rank test:
 - No covariates

- Cox's proportional hazards model
 - Adjusted for covariates

Cox's proportional hazards model

$$h(t, \mathbf{X}) = h_0(t) e^{\sum_{i=1}^p \beta_i X_i}$$

- $X = (X_1, X_2, ..., X_p)$, explanatory/predictor variables
- h₀(t) : baseline hazard, involves t but not X's
- exp(β_iX_i) : exponential, involves X, but not t (Xs can be time-dependent)

Cox's proportional hazards model

- Hazard(t) = (baseline risk) x (effects of covariates)
- Semi-parametric model

Proportional hazards model

- Let X = (x₁, ..., x_p) the set of predictors
- h(t|x): hazard of someone with predictors x
- $h(t|x) = h_0(t) \exp(\beta_1 x_1 + \dots + \beta_p x_p)$
- $h(t|x)/h_0(t) = exp(\beta_1x_1 + \cdots + \beta_px_p)$
- $\log(h(t|x)) = \log(h_0(t)) + \beta_1 x_1 + \dots + \beta_p x_p$ because $\log(a/b) = \log(a) \log(b)$
- Much like logistic regression but change *odds* to hazards

Cox's model

- The "baseline" hazard h₀(t) is unspecified plays the role of intercept
- Predictor effects in terms of hazard ratios *relative rates of failure*
- Don't need to know h₀(t)

to understand these predictor effects

 Effect of one unit increase in predictor x_p is to multiply hazard by exp(β_p)

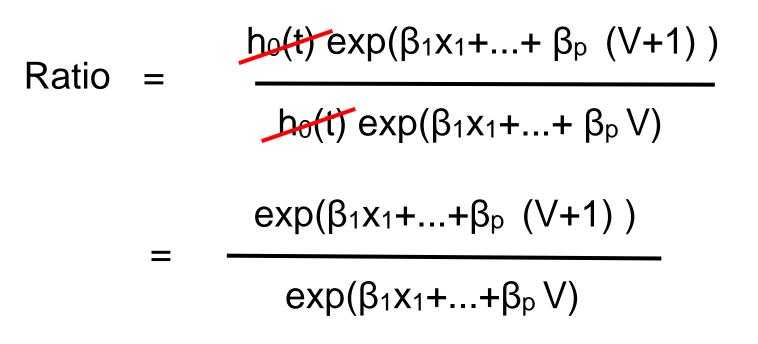
holding all other predictors constant

+1 unit change in x_p

$$\begin{split} h(t|x) &= h_0(t) \, \exp(\beta_1 x_1 + \ldots + \beta_p \, V \,) & x_p = V \\ versus \\ h(t|x) &= h_0(t) \, \exp(\beta_1 x_1 + \ldots + \beta_p \, (V+1) \,) & x_p = V+1 \end{split}$$

Ratio =
$$\frac{h_0(t) \exp(\beta_1 x_1 + ... + \beta_p (V+1))}{h_0(t) \exp(\beta_1 x_1 + ... + \beta_p V)}$$

+1 unit change in x_p



Ratio does not depend on t !

+1 unit change in x_p

Ratio =
$$\frac{\exp(\beta_1 x_1 + \dots + \beta_p (V+1))}{\exp(\beta_1 x_1 + \dots + \beta_p V)}$$

$$= \exp(\beta_1 x_1 + \ldots + \beta_p (V+1) - (\beta_1 x_1 + \ldots + \beta_p V))$$

because exp(a) / exp(b) = exp(a-b)

= exp(β_p (V+1) – β_p V) b/c same other predictors

= $exp(\beta_p)$ b/c $\beta_p V$ terms cancel

Hazard ratio

- β is the regression coefficient
 If no effect of a predictor variable then β=0
- HR for a unit increase in a predictor is $exp(\beta)$ If no effect of variable then $exp(\beta)=1$
- A useful way to discuss predictor effects (increases or decreases Hazard by a factor)

Why Cox model?

- Can be fitted without an explicit model for the hazard
- Can model the effect of a continuous predictor
- Can model multiple predictors: *continuous, binary, categorical*
- Can adjust for confounders: *adjust by adding confounders to the model*
- Can incorporate interaction, mediation: *create and add product terms*
- Can detect and estimate predictors for patientlevel prognosis

Comparison with other forms of regression

• Same issues as in linear and logistic regression: predictor selection

• Differences:

interpretation, assumptions, model checking

Baseline data

time =

c(6,6,6,7,10,13,16,22,23,6,9,10,11,17,19,20,25,32,32,34,35,1,1,2,2,3,4,4,5,5,8,8,8,8,11,11,12,12,15,17,22,23)

wbc =

c(2.31,4.06,3.28,4.43,2.96,2.88,3.60,2.32,2.57,3.20,2.80,2.70, 2.60,2.16,2.05,2.01,1.78,2.20,2.53,1.47,1.45, 2.80,5.00,4.91,4.48,4.01,4.36,2.42,3.49,3.97,3.52,3.05,2.32,3. 26,3.49,2.12,1.50,3.06,2.30,2.95,2.73,1.97)

```
dat=data.frame(group,time,status,wbc)
```

```
baseline = Surv(time, status==0)
```

```
km = survfit(baseline ~ 1)
```

```
summary(km)
```

Baseline data

time n.	risk n.e	vent sur	vival	std.err lower	95% CI upper	95% CI
1	42	2	0.952	0.0329	0.8901	1.000
2	40	2	0.905	0.0453	0.8202	0.998
3	38	1	0.881	0.0500	0.7883	0.985
4	37	2	0.833	0.0575	0.7279	0.954
5	35	2	0.786	0.0633	0.6709	0.920
6	33	3	0.714	0.0697	0.5899	0.865
7	29	1	0.690	0.0715	0.5628	0.845
8	28	4	0.591	0.0764	0.4588	0.762
10	23	1	0.565	0.0773	0.4325	0.739
11	21	2	0.512	0.0788	0.3783	0.692
12	18	2	0.455	0.0796	0.3227	0.641
13	16	1	0.426	0.0795	0.2958	0.615
15	15	1	0.398	0.0791	0.2694	0.588
16	14	1	0.369	0.0784	0.2437	0.560
17	13	1	0.341	0.0774	0.2186	0.532
22	9	2	0.265	0.0765	0.1507	0.467
23	7	2	0.189	0.0710	0.0909	0.395

Cox's model using R

```
dat=data.frame(group,time,status,wbc)
```

```
baseline = Surv(time, status==0)
```

```
km = survfit(baseline)
```

```
cox = coxph(Surv(time, status==0) ~ group + wbc)
summary(cox)
```

Cox's model using R

n= 42, number of events= 30

coef exp(coef) se(coef) z Pr(>|z|) group -1.3861 0.2501 0.4248 -3.263 0.0011 ** wbc 1.6909 5.4243 0.3359 5.034 4.8e-07 *** - - -Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1 exp(coef) exp(-coef) lower .95 upper .95 group 0.2501 3.9991 0.1088 0.5749 wbc 5.4243 0.1844 2.8082 10.4776 Concordance = 0.852 (se = 0.062) Rsquare= 0.671 (max possible= 0.988) Likelihood ratio test= 46.71 on 2 df, p=7.187e-11 Wald test = 33.6 on 2 df, p=5.061e-08Score (logrank) test = 46.07 on 2 df, p=9.921e-11

Interpretation of output

n= 4	42, numbe	er of event	ts= 30			
	coef	exp(coef)	se(coef)	z	Pr(> z)	
group	-1.3861	0.2501	0.4248	-3.263	0.0011	**
wbc	1.6909	5.4243	0.3359	5.034	4.8e-07	***

• Model

$$h(t) = L_t x e^{b1 x group + b2 x wbc}$$

• $Risk(t) = L_t \times e^{-1.3861 \times group + 1.6909 \times wbc}$

group: 0 = control, 1 = treatment

Interpretation of output

	<pre>exp(coef)</pre>	<pre>exp(-coef)</pre>	lower .95	upper .95
group	0.2501	3.9991	0.1088	0.5749
wbc	5.4243	0.1844	2.8082	10.4776

- Risk of remission in the treatment group is 75% lower than that in the controls (hazard ratio: 0.25; 95% CI 0.11 to 0.57)
- Risk of remission increased by 5.42 folds (95% CI 2.81 to 10.48) for each unit increase in wbc

Interpretation of output

```
Concordance= 0.852 (se = 0.062)

Rsquare= 0.671 (max possible= 0.988)

Likelihood ratio test= 46.71 on 2 df, p=7.187e-11

Wald test = 33.6 on 2 df, p=5.061e-08

Score (logrank) test = 46.07 on 2 df, p=9.921e-11
```

- Predicted risk and observed risk agree 85.2% of the times
- Group and wbc "explained" 67.1% variance in the risk of remission

What about "baseline risk"?

• $Risk(t) = L_t \times e^{-1.3861 \times group + 1.6909 \times wbc}$

```
group: 0 = control, 1 = treatment
```

- What is L_t?
- L_t = baseline risk
- Can be estimated from
 baseline = Surv(time, status==0)
 km = survfit(baseline ~ 1)
 summary(km)

Baseline probability of remission

time n	.risk n.e	vent sur	vival	std.err lower	95% CI upper	95% CI
1	42	2	0.952	0.0329	0.8901	1.000
2	40	2	0.905	0.0453	0.8202	0.998
3	38	1	0.881	0.0500	0.7883	0.985
4	37	2	0.833	0.0575	0.7279	0.954
5	35	2	0.786	0.0633	0.6709	0.920
6	33	3	0.714	0.0697	0.5899	0.865
7	29	1	0.690	0.0715	0.5628	0.845
8	28	4	0.591	0.0764	0.4588	0.762
10	23	1	0.565	0.0773	0.4325	0.739
11	21	2	0.512	0.0788	0.3783	0.692
12	18	2	0.455	0.0796	0.3227	0.641
13	16	1	0.426	0.0795	0.2958	0.615
15	15	1	0.398	0.0791	0.2694	0.588
16	14	1	0.369	0.0784	0.2437	0.560
17	13	1	0.341	0.0774	0.2186	0.532
22	9	2	0.265	0.0765	0.1507	0.467
23	7	2	0.189	0.0710	0.0909	0.395

Probability of remission with covariates

- Can estimate the probability of remission for
 - Any time point
 - A given group
 - AND a given wbc level

 $Risk(t) = L_t x e^{-1.3861 \times group + 1.6909 \times wbc}$

Estimation of risk probability

- Step 1: determine baseline risk during a period
- Step 2: calculate the average "linear term" (M)
- Step 3: calculate the individual "linear term" (L)
- Step 4: calculate D = L-M
- Step 5: calculate the risk of event

Estimation of risk probability: example

Example: An individual on treatment =1 with wbc = 3.0

What is the individual's probability of remission at 10 weeks?

Step 1 – determine baseline risk

• 10-week baseline "survival" is 0.565

 $S_0(10) = 0.565$

time n	.risk n.ev	vent surv	vival	std.err lower	95% CI upper	95% CI
1	42	2	0.952	0.0329	0.8901	1.000
2	40	2	0.905	0.0453	0.8202	0.998
3	38	1	0.881	0.0500	0.7883	0.985
4	37	2	0.833	0.0575	0.7279	0.954
5	35	2	0.786	0.0633	0.6709	0.920
6	33	3	0.714	0.0697	0.5899	0.865
7	29	1	0.690	0.0715	0.5628	0.845
8	28	4	0.591	0.0764	0.4588	0.762
10	23	1	0.565	0.0773	0.4325	0.739

Step 2 – calculate the average "linear term" (M)

- Using the mean of risk factors to calculate M
- Mean group = 0.5
- Mean wbc = 2.93
- $M = (-1.3861 \times 0.5) + (1.6909 \times 2.93)$ = 4.261

Step 3 - calculate the individual "linear term" (L)

- Using the individual's group and wbc to calculate L
- group = 1 (on treatment)
- wbc = 3.0
- $L = (-1.3861 \times 1) + (1.6909 \times 3)$

= 3.6866

Step 4 - calculate D = L-M

 Difference between the individual's linear term and average linear term

D = L - M

- = 3.6866 4.261
- = -0.5744

Step 5 - calculate the risk of event

We want to estimate the 10-week risk for the individual:

$$Risk(10) = 1 - [S_0]^{exp(d)}$$
$$= 1 - 0.565^{exp(-0.5744)}$$
$$= 0.682$$

The risk of remission at week 10 is 68.2%.

What is the risk of remission at week 10 for a control patient?

Exponential and Weibull models

Comparison

```
exponential = survreg(Surv(time, status==0) ~ group + wbc,
dist="exponential")
```

```
summary(exponential)
```

```
weibull = survreg(Surv(time, status==0) ~ group + wbc)
summary(weibull)
```

Summary

- Time-to-event data
- Kaplan-Meier analysis (actuarial analysis)
- Cox's regression allows an assessment of risk factors
- Cox's regression provides a very useful prognostic model in clinical medicine