Survival Analysis: Kaplan-Meier Method

Tuan V. Nguyen Professor and NHMRC Senior Research Fellow Garvan Institute of Medical Research University of New South Wales Sydney, Australia

What we will learn ...

- Goals of survival analysis
- Data layout
- Kaplan-Meier method

Goals of survival analysis

- To estimate and interpret survivor/hazard functions from survival data
- To compare survivor/hazard functions
- To assess the relationship of predictors to survival time
- Develop prognostic models

Basic data layout

Person	Time	Status	Factor 1	Factor 2	Factor p
1	t ₁	d ₁	X ₁₁	X ₁₂	X _{1p}
2	t ₂	d ₂	X ₂₁	X ₂₂	X _{2p}
5	t ₅ = 3	d ₅ =1	X ₅₁	X ₅₂	X _{5p}
n	t _n	d _n	X _{n1}	X _{n2}	X _{np}

An example

Gro	up 1	Group 2		
t (weeks)	log WBC	t (weeks)	log WBC	
6	2.31	1	2.80	
6	4.06	1	5.00	
6	3.28	2	4.91	
7	4.43	2	4.48	
10	2.96	3	4.01	
13	2.88	4	4.36	
16	3.60	4	2.42	
22	2.32	5	3.49	
23	2.57	5	3.97	
6+	3.20	8	3.52	
9+	2.80	8	3.05	
10+	2.70	8	2.32	
11+	2.60	8	3.26	
17+	2.16	11	3.49	
19+	2.05	11	2.12	
20+	2.01	12	1.50	
25+	1.78	12	3.06	
32+	2.20	15	2.30	
32+	2.53	17	2.95	
34+	1.47	22	2.73	
35+	1.45	23	1.97	

Actual data from a study

- Group 1 (treatment, n=21): 6, 6, 6, 7, 10, 13, 16, 22, 23, 6+, 9+, 10+, 11+, 17+, 19+, 20+, 25+, 32+, 32+, 34+, 35+
- Group 2 (control, n=21): 1, 1, 2, 2, 3, 4, 4, 5, 5, 8, 8, 8, 8, 11, 11, 12, 12, 15, 17, 22, 23

+ denotes:

in remission at the study end

lost of follow-up

withdraws

Data arrangement for analysis

Group 1, sorted by time: 6, 6, 6, 6+, 7, 9+, 10, 10+, 11+, 13, 16, 17+, 19+, 20+, 22, 23, 25+, 32+, 32+, 34+, 35+

Person	Time	Status (1=event, 0=censored)	Group
1	6	1	1
2	6	1	1
3	6	1	1
4	6	0	1
5	7	1	1
6	9	0	1
20	34	0	1
21	35	0	1

Data arrangement for analysis

Group 2 (coded 0), sorted by time: 1, 1, 2, 2, 3, 4, 4, 5, 5, 8, 8, 8, 8, 11, 11, 12, 12, 15, 17, 22, 23

Person	Time	Status (1=event, 0=censored)	Group
22	1	1	0
23	1	1	0
24	2	1	0
41	22	1	0
42	23	1	0

Kaplan-Meier analysis (preparation)

Group 1, sorted by time: 6, 6, 6, 6+, 7, 9+, 10, 10+, 11+, 13, 16, 17+, 19+, 20+, 22, 23, 25+, 32+, 32+, 34+, 35+

Time (t _j)	m _j	q _j	R(t _j)
0	0	0	21 patients survive \geq 0 weeks
6	3	1	21 patients survive \geq 6 weeks
7	1	1	17 patients survive \geq 7 weeks
10	1	2	15 patients survive \geq 10 weeks
13	1	0	12 patients survive \geq 13 weeks
16	1	3	11 patients survive > 16 weeks
22	1	0	7 patients survive \geq 22 weeks
23	1	5	6 patients survive \geq 23 weeks

 t_j = survival time; m_j = number of persons who failed (events); q_j = number of censored persons

Tied observation

- Note that there were 3 ties at 6 weeks
- When there are no ties, m_i = 1

Kaplan-Meier analysis (preparation)

Group 2, sorted by time: 1, 1, 2, 2, 3, 4, 4, 5, 5, 8, 8, 8, 8, 11, 11, 12, 12, 15, 17, 22, 23

Time (t _j)	m _j	q _j	R(t _j)
0	0	0	21 patients survive \geq 0 week
1	2	0	21 patients survive \geq 1 week
2	2	0	19 patients survive \geq 2 weeks
3	1	0	17 patients survive \geq 3 weeks
4	2	0	16 patients survive \geq 4 weeks
5	2	0	14 patients survive \geq 5 weeks
8	4	0	12 patients survive \geq 8 weeks
11	2	0	8 patients survive \geq 11 weeks
12	2	0	6 patients survive <u>></u> 12 weeks
15	1	0	4 patients survive \geq 15 weeks
17	1	0	3 patients survive > 17 weeks
22	1	0	2 patients survive \geq 22 weeks
23	1	0	1 patient survive <u>></u> 23 weeks

Descriptive measures of survival experience

Group 1	Group 2
6, 6, 6, 6+, 7, 9+, 10, 10+, 11+, 13, 16, 17+, 19+, 20+, 22, 23, 25+, 32+, 32+, 34+, 35+	1, 1, 2, 2, 3, 4, 4, 5, 5, 8, 8, 8, 8, 11, 11, 12, 12, 15, 17, 22, 23
Sum of times (ignoring +'s): 359 weeks	Total follow-up: 182 weeks
T_1 (mean follow-up) = 359/21 = 17.1 weeks	$T_2 = 8.6$ weeks
h ₁ = 9 / 359 = 0.025	h ₁ = 21 / 182 = 0.115

Kaplan Meier Analysis

Life table (group 1)

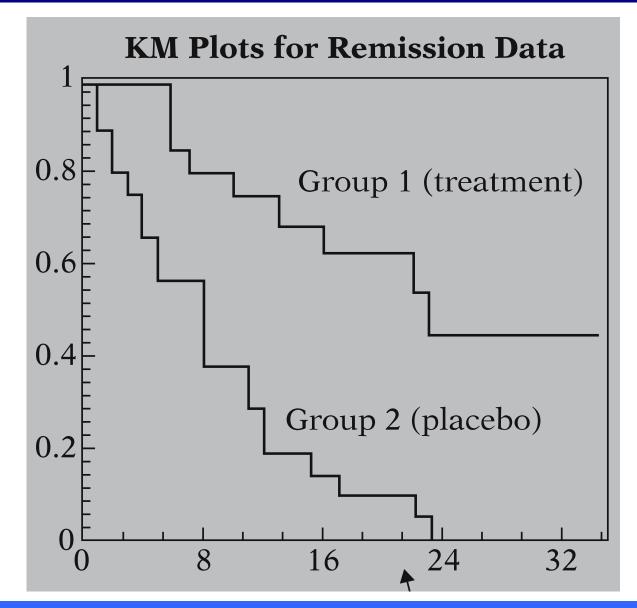
Time (t _j)	n _j	m _j	q _j
0	21	0	0
6	21	3	1
7	17	1	1
10	15	1	2
13	12	1	0
16	11	1	3
22	7	1	0
23	6	1	5
>23	-	-	-

Life table (group 2)

Time (t _j)	n _j	m _j	q _j
0	21	0	0
1	21	2	0
2	19	2	0
3	17	1	0
4	16	2	0
5	14	2	0
8	12	4	0
11	8	2	0
12	6	2	0
15	4	1	0
17	3	1	0
22	2	1	0
23	1	1	0

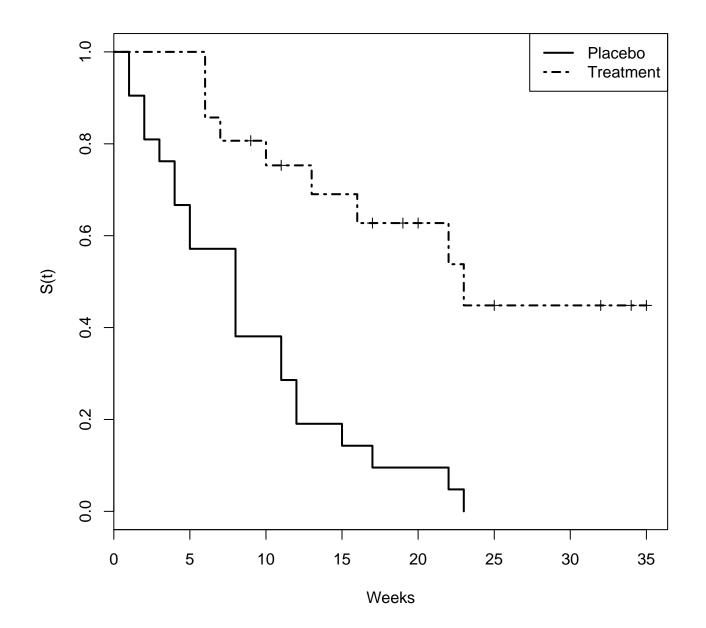
Kaplan Meier (KM) survival probabilities

Time (t _j)	n _j	m _j	q _j	S _{tj}
0	21	0	0	1
1	21	2	0	19 / 21 = 0.90
2	19	2	0	17 / 21 = 0.81
3	17	1	0	16 / 21 = 0.76
4	16	2	0	14 / 21 = 0.67
5	14	2	0	12 / 21 = 0.57
8	12	4	0	8 / 21 = 0.38
11	8	2	0	6 / 21 = 0.29
12	6	2	0	4 / 21 = 0.19
15	4	1	0	3 / 21 = 0.14
17	3	1	0	2 / 21 = 0.10
22	2	1	0	1 / 21 = 0.05
23	1	1	0	0 / 21 = 0.00


Kaplan Meier (KM) survival probabilities

Time (t _j)	S _{tj}	KM Curve for Group 2 (Placebo)
0	1	
1	19 / 21 = 0.90	
2	17 / 21 = 0.81	$\hat{S}(t)$ \downarrow \Box
3	16 / 21 = 0.76	
4	14 / 21 = 0.67	.5 –
5	12 / 21 = 0.57	
8	8 / 21 = 0.38	-
11	6 / 21 = 0.29	t h
12	4 / 21 = 0.19	
15	3 / 21 = 0.14	
17	2 / 21 = 0.10	0 5 10 15 20 Weeks
22	1 / 21 = 0.05	
23	0 / 21 = 0.00	$S(t) = \Pr\left(T > t\right)$

KM survival probabilities (group 1)


Time (t _j)	n _j	m _j	q _j	P(survive)	S _{tj}
0	21	0	0	1	1
6	21	3	1	18/21 = 0.8571	1 x 0.8571 = 0.8571
7	17	1	1	16/17 = 0.9411	0.8571 x 0.9411 = 0.8067
10	15	1	2	14/15 = 0.9333	0.8067 x 0.9333 = 0.7529
13	12	1	0	11/12 = 0.9167	0.7529 x 0.9167 = 0.6902
16	11	1	3	10/11 = 0.9091	0.6902 x 0.9091 = 0.5378
22	7	1	0	6/7 = 0.8571	0.5378 x 0.8571 = 0.5378
23	6	1	5	5/6 = 0.8333	0.5378 x 0.8333 = 0.4482

Comparison of KM survival curves

R codes

time = c(6, 6, 6, 6, 7, 9, 10, 10, 11, 13, 16, 17, 19, 20, 22,23, 25, 32, 32, 34, 35, 1, 1, 2, 2, 3, 4, 4, 5, 5, 8, 8, 8, 8, 11, 11, 12, 12, 15, 17, 22, 23) status = c(0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1,dat = data.frame(time, status, group) library) (survival) km = survfit(Surv(time, status==0) ~ group); km plot(km, lty=c(1,4), lwd=2, xlab="Weeks", ylab="S(t)") legend("topright", c("Placebo", "Treatment"), lty=c(1,4), lwd=2)

Comparison of survival curves

- Are the two survival curves significantly different?
- How to test for the difference?
- Answer: Log-rank statistic

Log-rank test statistic

- Chi-square test
- Overall comparison of KM curves
- Observed versus expected counts
- Categories defined by ordered failure times

Log-rank test statistic

EXAMPLE

Remission data: $n = 42$					
# failures			# in ri	# in risk set	
$t_{(j)}$	m_{1j}	m_{2j}	n_{1j}	n _{2j}	
1	0	2	21	21	
2	0	2	21	19	
3	0	1	21	17	
4	0	2	21	16	
5	0	2	21	14	
6	3	0	21	12	
7	1	0	17	12	
8	0	4	16	12	
(10)	1	0	15	8	
11	0	2	13	8	
12	0	2	12	6	
13	1	0	12	4	
15	0	1	11	4	
16	1	0	11	3	
17	0	1	10	3	
22	1	1	7	2	
23	1	1	6	1	

Expected cell counts:

$$e_{1j} = \left(\frac{n_{1j}}{n_{1j} + n_{2j}}\right) \times (m_{1j} + m_{2j})$$

$$\uparrow \qquad \uparrow$$

Proportion in risk set # of failures overboth groups

$$e_{2j} = \left(\frac{n_{2j}}{n_{1j} + n_{2j}}\right) \times (m_{1j} + m_{2j})$$

Log-rank test statistic

EXAMPLE

Expanded Table (Remission Data)

		# failı	ires	# in ri	isk set	# expe	ected	Observed-	-expected
j	$t_{(j)}$	m_{1j}	m_{2j}	n_{1j}	n _{2j}	e_{1j}	e_{2j}	$m_{1j} - e_{1j}$	$m_{2j} - e_{2j}$
1	1	0	2	21	21	(21/42) × 2	(21/42) × 2	-1.00	1.00
2	2	0	2	21	19	$(21/40) \times 2$	$(19/40) \times 2$	-1.05	1.05
3	3	0	1	21	17	$(21/38) \times 1$	$(17/38) \times 1$	-0.55	0.55
4	4	0	2	21	16	(21/37) × 2	$(16/37) \times 2$	-1.14	1.14
5	5	0	2	21	14	(21/35) × 2	$(14/35) \times 2$	-1.20	1.20
6	6	3	0	21	12	$(21/33) \times 3$	$(12/33) \times 3$	1.09	-1.09
7	7	1	0	17	12	(17/29) × 1	$(12/29) \times 1$	0.41	-0.41
8	8	0	4	16	12	$(16/28) \times 4$	$(12/28) \times 4$	-2.29	2.29
9	10	1	0	15	8	$(15/23) \times 1$	(8/23) × 1	0.35	-0.35
10	11	0	2	13	8	$(13/21) \times 2$	$(8/21) \times 2$	-1.24	1.24
11	12	0	2	12	6	$(12/18) \times 2$	(6/18) × 2	-1.33	1.33
12	13	1	0	12	4	$(12/16) \times 1$	$(4/16) \times 1$	0.25	-0.25
13	15	0	1	11	4	$(11/15) \times 1$	$(4/15) \times 1$	-0.73	0.73
14	16	1	0	11	3	$(11/14) \times 1$	$(3/14) \times 1$	0.21	-0.21
15	17	0	1	10	3	(10/13) × 1	$(3/13) \times 1$	-0.77	0.77
16	22	1	1	7	2	$(7/9) \times 2$	$(2/9) \times 2$	-0.56	0.56
17	23	1	1	6	1	$(6/7) \times 2$	$(1/7) \times 2$	-0.71	0.71
Tota	ls	9	21)			19.26	10.74	-10.26	-10.26

of failure times $O_i - E_j = \sum_{j=1}^{4} (m_{ij} - e_{ij}),$ i = 1, 2

EXAMPLE
$O_1 - E_1 = -10.26$
$O_2 - E_2 = 10.26$

Log-rank statistic

Log-rank statistic =
$$\frac{(O_2 - E_2)^2}{\operatorname{Var}(O_2 - E_2)}$$

- **O** = observed, **E** = expected
- Var = variance

	Events	Events		
Group	observed	expected		
1	9	19.25		
2	21	10.75		
Total	30	30.00		
$\boxed{\text{Log-rank} = \text{chi2}(2) = 16.79}$				
P-value = Pr > chi2 = 0.000				

Log-rank statistic using R

```
time = c(6, 6, 6, 6, 7, 9, 10, 10, 11, 13, 16, 17, 19, 20, 22,
23, 25, 32, 32, 34, 35, 1, 1, 2, 2, 3, 4, 4, 5, 5, 8, 8, 8, 8,
11, 11, 12, 12, 15, 17, 22, 23)
status = c(0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1,
dat = data.frame(time, status, group)
library) (survival)
km = survfit(Surv(time, status==0) ~ group)
km
km.diff = survdiff(Surv(time, status==0) ~ group)
km.diff
```

Log-rank statistic using R

Chisq= 16.8 on 1 degrees of freedom, p= 4.17e-05

Problem of with log-rank test

- Cannot take into account the effects of covariates
- We need another method: Cox's proportional hazards model