Introduction to Survival Analysis

Tuan V. Nguyen Professor and NHMRC Senior Research Fellow Garvan Institute of Medical Research University of New South Wales Sydney, Australia

Introduction to survival analysis

- What is survival analysis
- Terminology
- Concepts of survivor function, hazard function

What is survival analysis?

- Statistical technique for analyzing *prospective study*
- Outcome: time to an event
- Time: years, months, weeks, days, etc
- Event: death, disaese, relapse, recovery, etc
- One event, multiple events

Examples of outcome

- Leukemia patients / time to remission (weeks)
- Disease-free cohort until fracture (years)
- Elderly population/time until death (years)
- Heart transplants/time until death (months)
- Time until divorce (marriage)
- Etc

Censored and Failure

- Censoring: key analytic problem
- Censoring occurs when
 - We have some information about an individual survival time
 - Don't know exactly

Why censoring occurs?

- No event (until the end of study)
- Loss to follow-up
- Withdraws

Censoring

- X denotes an event
- Person A: got the event at week 5 (not censored)
- Person B: followed for 12 weeks, no event until the end of the study
- Person C: entered the study between 2nd and 3rd week, and withdrew at week 6 (survival time 3.5 weeks)
- etc

Survival time

Person	Survival time	Failed (1); censored (0)
A	5.0	1
В	12	0
С	3.5	0
D	8.0	0
E	6.0	0
F	3.5	1

Two types of censoring data

- Right censored
- Left censored

Right censored data

Exact survival time is incomplete at the right side of the follow-up

Left censored data

True time <= Observed time

When a person's true survival time is LESS than or equal to that person's observed survival time

Terminologies and notations

• Survivor function

• Status variable

Hazard function

Survivor function

- T = survival time
- *T*≥0
- *T* is a random variable
- t = specific value for T
- "Survived > 5 years" \rightarrow T > t=5
- S(t) : survivor function

Status variable

$\delta = (0, 1)$ random variable

 $= \begin{cases} 1 & \text{if failure} \\ 0 & \text{if censored} \end{cases}$

- Study ends
- Lost to follow-up
- Withdraws

Survival function, S(t)

$$S(t) = P(T > t)$$

t	S(t)
1	S(1) = P(T > 1)
2	S(2) = P(T > 2)
3	S(3) = P(T > 3)
•	•

Step function

Hazard function, h(t)

- S(t) : NOT failing
- h(t) : Failing

 h(t): the probability of getting an event at time t, GIVEN surviving up to time t

$$h(t) = \lim_{\Delta t \to 0} \frac{P(t \le T < t + \Delta t | T \ge t)}{\Delta t}$$

Hazard function = Velocity

- Driving a car, 60 km/h
- The distance travelled exactly 60 km in 1 hour
- How fast the car is going at THAT moment
- Hazard h(t): instantaneous potential at time t.

Hazard function: conditional probability

- Hazard function conditional probability
- $P(t \le T \le t + dt | T \ge t)$
- P(person fails in the interval t to t+ δ t, IF suvived up to time t)
- P(A will survive until 80 years if A has survived to 60)
- P(A will survive until 80 years if I has survived to 50)

Hazard function: conditional failure rate

$$\lim_{\Delta t \to 0} \frac{P(t \le T < t + \Delta t \mid T \ge t)}{\Delta t}$$

Probability per unit time

Rate: 0 to ∞

Because of GIVEN (if), hazard function is a rate rather than a probability

Hazard function: conditional failure rate

$$P = P(t \le T \le t + dt | T \ge t)$$
$$P = 1/3$$

Ρ	dt	P/dt = rate
1/3	½ day	(1/3) / (1/2) = 0.67/day
1/3	1/14 week	(1/3) / (1/14) = 4.67/week

Instantaneous potential

- When limit near 0 (dt → 0), it is an instantaneous rate at time t per unit time
- h(t) gives the instantaneous potential for failing at time t per unit time (given survived up to time t)

Constant hazard

Constant hazard (exponential model)

h(t) for healthy persons

Workshop on Analysis of Clinical Studies - Can Tho University of Medicine and Pharmacy - April 2012

1

λ

More on hazard functions

- Increasing Weibull model
- Decreasing Weibull model
- Lognormal survival

Uses of hazard function

- A measure of instantaneous potential
- Useful for identifying a specific model form (eg Weibull, lognormal)
- "Vehicle" for mathematical modeling of survival data (eg survival model is written in terms of hazard function)

Relationship between S(t) and h(t)

• H(t) is sometimes denoted by λ (lambdat)

$$h(t) = \lambda$$
 if and only if $S(t) = e^{-\lambda t}$

General formulae:

$$S(t) = \exp\left[-\int_0^t h(u)du\right]$$
$$h(t) = -\left[\frac{dS(t)/dt}{S(t)}\right]$$

Goals of survival analysis

- To estimate and interpret survivor/hazard functions from survival data
- To compare survivor/hazard functions
- To assess the relationship of predictors to survival time
- Develop prognostic models