Simple linear regression analysis

Tuan V. Nguyen Professor and NHMRC Senior Research Fellow Garvan Institute of Medical Research University of New South Wales Sydney, Australia

What we are going to learn ...

- Examples
- Purposes of linear regression analysis
- Questions of interest
- Model parameters
- R analysis
- Interpretation

Femoral neck bone density and age

age

Weight and femoral neck bone density

plot(fnbmd ~ weight, pch=16)
abline(lm(fnbmd ~ weight))

Correlation analysis

- Assessment of a relationship
- The coefficient of correlation: a measure of the relationship
- We want to know more ...
 - The magnitude of effect of a *predictor* variable on the *outcome*
 - Prediction of outcome by using the predictor variable(s)

Our interests

- Finding a statistical model that decribes the relationship between age, weight, and BMD
- Adjustment of effect
- Prediction

Linear regression model

Weight and femoral neck bone density

We can also describe the line in terms of a slope and an intercept

- The slope the change in the *y*-value for a unit change in the *x*-value. In this simple situation we can think of this as the change in the height of the line as we progress along the *x*-axis
- The intercept is the height of the line when x = 0

Linear regression: model

- Y: random variable representing a **response**
- X: random variable representing a **predictor** variable (predictor, risk factor)
 - Both Y and X can be a categorical variable (e.g., yes / no) or a continuous variable (e.g., age).
 - If Y is categorical, the model is a **logistic regression** model; if Y is continuous, a **simple linear regression** model.
- Model

$$\boldsymbol{Y} = \boldsymbol{\alpha} + \boldsymbol{\beta} \boldsymbol{X} + \boldsymbol{\varepsilon}$$

- $\boldsymbol{\alpha}$: intercept
- β : slope / gradient
- ε : random error (variation between subjects in y even if x is constant, e.g., variation in cholesterol for patients of the same age.)

Linear regression: assumptions

- The relationship is linear *in terms of the parameter*,
- X is measured without error;
- The values of *Y* are independently from each other (e.g., *Y*₁ is not correlated with *Y*₂);
- The random error term (ε) is normally distributed with mean 0 and constant variance.

Criteria of estimation

X

The goal of least square estimator (LSE) is to find a and b such that the sum of d^2 is minimal.

- We could try fitting a line "by eye"
- But everyone's best guess would probably be different
- We want consistency

Estimating parameters by R

- Our interest: relationship between BMD and weight
- Model:

BMD = a + b*weight + e

- We want to estimate *a* and *b*
- R language

lm(bmd ~ weight)

R analysis

- > m1 = lm(fnbmd ~ weight)
- > summary(m1)

```
Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.4699822 0.0310144 15.15 < 2e-16 ***

weight 0.0049416 0.0006041 8.18 1.95e-15 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.1152 on 556 degrees of freedom

Multiple R-squared: 0.1074, Adjusted R-squared: 0.1058

F-statistic: 66.9 on 1 and 556 DF, p-value: 1.945e-15
```

Interpretation of outputs

Coefficients:							
	Estimate	Std.	Error	t	value	Pr(> t)	
(Intercept)	0.4699822	0.03	310144		15.15	< 2e-16	***
weight	0.0049416	0.00	006041		8.18	1.95e-15	***

• Remember our model:

```
BMD = a + b*weight
```

• Our equation:

BMD = 0.47 + 0.0049*weight

 Interpretation: 1 kg increase in weight was associated with a 0.0049 g/cm² increase in BMD. The association is statistically significant (P < 0.0001)

BMD = 0.47 + 0.0049*weight

Workshop on Analysis of Clinical Studies – Can Tho University of Medicine and Pharmacy – April 2012

Analysis of variance

- **BMD** = a + b*weight + e
- Observed variation = model + random

"Variation" = sum of squares

• SST = total sum of squares

SSR = sum of squares due to the regresson model

SSE = sum of squares due to random component

- SST = SSR + SSE
- R² = SSR / SST

Partitioning of variations: geometry

SST = SSR + SSE

Partitioning of variation by R

> m1 = lm(fnbmd ~ weight)
> anova(m1)

```
Analysis of Variance Table
Response: fnbmd
Df Sum Sq Mean Sq F value Pr(>F)
weight 1 0.8883 0.88829 66.905 1.945e-15 ***
Residuals 556 7.3819 0.01328
----
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

- Total SS = 0.8883 + 7.3819 = 8.2702
- R2 = 0.8883 / 8.2702 = 0.107

Interpretation of outputs

Residual standard error: 0.1152 on 556 degrees of freedom Multiple R-squared: 0.1074, Adjusted R-squared: 0.1058 F-statistic: 66.9 on 1 and 556 DF, p-value: 1.945e-15

- $R^2 = 0.107$
- Interpretation: Approximately 11% of BMD variance could be accounted for by body weight

Variance of BMD after adjusting for weight

> m1 = lm(fnbmd ~ weight)
> anove(m1)

```
Analysis of Variance Table

Response: fnbmd

Df Sum Sq Mean Sq F value Pr(>F)

weight 1 0.8883 0.88829 66.905 1.945e-15 ***

Residuals 556 7.3819 0.01328

----

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

- Mean square (MS) = sum of squares / (degrees of freedom)
- MS(residuals) = 7.3819 / 556 = 0.01328
- \Rightarrow Variance of BMD after adjusting for weight is 0.01328

(variance of BMD before the adjustment: 0.01485

Prediction of BMD by weight

- The model: **BMD** = 0.47 + 0.0049*weight
- Without the knowledge of weight, the mean BMD is 0.72 g/cm²
- With knowledge of weight, we know that BMD is dependent on weight
- Weight = 50 kg, BMD = 0.47 + 0.0049*50 = 0.72 g/cm²
 Weight = 40 kg, BMD = 0.47 + 0.0049*40 = 0.67 g/cm²
 Weight = 60 kg, BMD = 0.47 + 0.0049*60 = 0.76 g/cm²

Checking model assumptions

par(mfrow=c(2,2))
plot(m1)

Be careful! Anscrombe's data

Frank Anscombe devised 4 sets of X-Y pairs

х	y1	y2	уЗ	x4	y4
10	8.04	9.14	7.46	8	6.58
8	6.95	8.14	6.77	8	5.76
13	7.58	8.74	12.74	8	7.71
9	8.81	8.77	7.11	8	8.84
11	8.33	9.26	7.81	8	8.47
14	9.96	8.10	8.84	8	7.04
6	7.24	6.13	6.08	8	5.25
4	4.26	3.10	5.39	19	12.50
12	10.84	9.13	8.15	8	5.56
7	4.82	7.26	6.42	8	7.91
5	5.68	4.74	5.73	8	6.89

Mean and SD of Anscombe's data

		Х		Y		
Data Set	Ν	Mean	SD	Mean	SD	
1	11	7.50	2.03	9.00	3.32	
2	11	7.50	2.03	9.00	3.32	
3	11	7.50	2.03	9.00	3.32	
4	11	7.50	2.03	9.00	3.32	

Correlation between X and Y: Anscombe's data

Data Set	Pearson r	R-squared	Adj. R-sq	SE
1	0.82	0.67	0.63	1.24
2	0.82	0.67	0.63	1.24
3	0.82	0.67	0.63	1.24
4	0.82	0.67	0.63	1.24

Regression analysis: Anscombe's data

Data Sot		в	SE	t	р	95% CI	
Data Set		В		L		Lower	Upper
1	Constant	3.00	1.124	2.67	0.026	0.459	5.544
	Х	0.50	0.118	4.24	0.002	0.233	0.766
2	Constant	3.00	1.124	2.67	0.026	0.459	5.546
	Х	0.50	0.118	4.24	0.002	0.233	0.766
3	Constant	3.00	1.125	2.67	0.026	0.455	5.547
	Х	0.50	0.118	4.24	0.002	0.233	0.767
4	Constant	3.00	1.125	2.67	0.026	0.456	5.544
	Х	0.50	0.118	4.24	0.002	0.233	0.767

For all 4 models, **Y**['] = **0.5(X)** + **3**

But ...

Tho University of Medicine and Pharmacy – April 2012

Summary

- Simple linear regression model is used for
 - Understanding the effect of a risk factor or determinant on an outcome variable
 - Predicting an outcome variable
- It's appropriate when the functional relationship is linear
- Always check assumptions!