Multivariable Logistic Model: Interaction

Professor Tuan V. Nguyen Garvan Institute of Medical Research University of New South Wales Sydney – Australia

Contents

Topics

- Binary anova
- Variable selection
- Under/over dispersion

Binary Anova

- Categorical variables are included in logistic regressions in just the same way as in linear regression.
- Done by means of "dummy variables".
- Interpretation is similar, but in terms of logodds rather than means.
- A model which fits a separate probability to every possible combination of factor levels is a maximal model, with zero deviance

Example

- The plum tree data: see the coursebook,
- For another example, see Tutorial 8)
- Data concerns survival of plum tree cuttings. Two categorical explanatory variables, each at 2 levels: *planting time* (spring, autumn) and *cutting length* (long, short). For each of these 4 combinations 240 cuttings were planted, and the number surviving recorded.

Data

	length	time	r	n
1	long	autumn	156	240
2	long	spring	84	240
3	short	autumn	107	240
4	short	spring	31	240

Fitting

```
> plum.glm<-glm(cbind(r,n-r)~length*time, family=binomial,
data=plum.df)
> summary(plum.glm)
Call:
glm(formula = cbind(r, n - r) ~ length * time, family =
binomial, data = plum.df)
                               Zero residuals!
Deviance Residuals:
Coefficients:
                     Estimate Std. Error z value Pr(>|z|)
                       0.6190 0.1353 4.574 4.78e-06 ***
(Intercept)
lengthshort
                      -0.8366 0.1876 -4.460 8.19e-06 ***
timespring
                     -1.2381 0.1914 -6.469 9.87e-11 ***
lengthshort:timespring -0.4527 0.3009 -1.505 0.132
Null deviance: 1.5102e+02 on 3 degrees of freedom
Residual deviance: 1.7683e-14 on 0 degrees of freedom
AIC: 30.742
                                         Zero deviance and df!
```

Points to note

- The model length*time fits a separate probability to each of the 4 covariate patterns
- Thus, it is fitting the maximal model, which has zero deviance by definition
- This causes all the deviance residuals to be zero
- The fitted probabilities are just the ratios r/n

Fitted logits

Logits	Length=I ong	Length= short Coefficients: (Intercept) lengthshort timespring		Estimate 0.6190 -0.8366 -1.2381		
Time= autumn	.6190	.61908366 = 2176	lengthshort:timespring	g -0.4527		
Time= spring	.6190 - 1.281= 6191	.6190 -1.2381 83664527 = -1.9084				

> predict(plum.glm)
[1] 0.6190392 -0.6190392 -0.2175203 -1.9083470

Interaction plot

Anova

```
> anova(plum.glm,test="Chisq")
Analysis of Deviance Table
Model: binomial, link: logit
Response: cbind(r, n - r)
Terms added sequentially (first to last)
```

	\mathtt{Df}	Deviance	Resid.Df	Resid.Dev	P(> Chi)
NULL			3	151.019	
length	1	45.837	2	105.182	1.285e-11
time	1	102.889	1	2.294	3.545e-24
length:time	1	2.294	0	7.727e-14	0.130
> 1-pchisq(2.2	94,1)			
[1] 0.12987	48 _				

Interaction not significant

Final model: interpretation and fitted probabilities

```
> plum2.glm<-glm(cbind(r,n-r)~length + time,
family=binomial, data=plum.df)
> summary(plum2.glm)
Call:
glm(formula = cbind(r, n - r) ~ length + time, family =
binomial, data = plum.df)
Coefficients:
           Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.7138 0.1217 5.867 4.45e-09 ***
lengthshort -1.0177 0.1455 -6.995 2.64e-12 ***
timespring -1.4275 0.1465 -9.747 < 2e-16 ***
Null deviance: 151.0193 on 3 degrees of freedom
Residual deviance: 2.2938 on 1 degrees of freedom
AIC: 31.036
> 1-pchisq(2.2938,1)
[1] 0.1298916
```

Final model: interpretation and fitted probabilities

Estimate Std. Error z value Pr(>|z|) (Intercept) 0.7138 0.1217 5.867 4.45e-09 *** lengthshort -1.0177 0.1455 -6.995 2.64e-12 *** timespring -1.4275 0.1465 -9.747 < 2e-16 ***

Prob of survival less for short cuttings (coeff<0) Prob of survival less for spring planting (coeff<0)

Null deviance: 151.0193 on 3 degrees of freedom Residual deviance: 2.2938 on 1 degrees of freedom AIC: 31.036

Deviance of 2.2938 on 1 df: pvalue is 0.1299 evidence is that no-interaction model fits well.

Fitted Probabilities

	Length=	Length=	
	long	short	
Time =			
autumn	0.6712	0.4246	
Time =			
spring	0.3288	0.1504	

> predict(plum2.glm,type="response")
[1] 0.6712339 0.3287661 0.4245994 0.1504006

Variable selection

- Variable selection proceeds as in ordinary regression
- Use anova and stepwise
- AIC also defined for logistic regression
 AIC = Deviance + 2 ´(number of parameters)
- Pick model with smallest AIC

Example: lizard data

- Site preferences of 2 species of lizard, grahami and opalinus
- Want to investigate the effect of
 - Perch height
 - Perch diameter
 - Time of day

on the probability that a lizard caught at a site will be grahami

Data

	length	height	time	r	n
1	short	low	early	54	67
2	short	high	early	44	49
3	long	low	early	25	43
4	long	high	early	18	19
5	short	low	mid	77	98
6	short	high	mid	63	67
7	long	low	mid	64	97
8	long	high	mid	21	26
9	short	low	late	22	36
10	short	high	late	25	38
11	long	low	late	13	24
12	long	high	late	5	10

Eyeball analysis

> plot.design(lizard.df, y=log((lizard.df\$r+0.5)
/(lizard.df\$n-lizard.df\$r+0.5)), ylab="mean of logits")

Factors

Proportion of grahami lizards higher when perches are short and high, and in the earlier part of the day

Model selection

• Full model is

cbind(r,n-r)~time*length*height so fit this first.

• Then use anova and stepwise to select a simpler model if appropriate

anova

- > lizard.glm<-glm(cbind(r,n-r)~time*length*height,
- + family=binomial,data=lizard.df)
- > anova(lizard.glm, test="Chisq")

Df Deviance Res	sid. Df	Resid. Dev	P(> Chi)		
NULL			11	54.043	
time	2	14.711	9	39.332	0.001
length	1	15.680	8	23.652	7.503e-05
height	1	13.771	7	9.882	2.065e-04
time:length	2	1.170	5	8.711	0.557
time:height	2	5.017	3	3.694	0.081
length:height	1	0.001	2	3.693	0.971
<pre>time:length:heig</pre>	ght 2	3.693	0 -1.	354e-14	0.158

Both approaches suggest model cbind(s,n-s) ~ time + length + height

stepwise

```
>null.model<-glm(cbind(r,n-r)~1, family=binomial,
data=lizard.df)
> step(null.model, formula(lizard.glm), direction="both")
Call: glm(formula = cbind(r, n - r) ~ height + time + length,
family = binomial, data = lizard.df)
Coefficients:
(Intercept) heightlow timelate timemid lengthshort
   1.49466 -0.83011 -1.05278
                                    0.04003 0.67630
Degrees of Freedom: 11 Total (i.e. Null); 7 Residual
Null Deviance: 54.04
Residual Deviance: 9.882 AIC: 64.09
```

Summary

```
> summary(model2)
Call:
glm(formula = cbind(r, n - r) ~ time + length + height,
family = binomial, data = lizard.df)
Coefficients:
           Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.49466 0.28809 5.188 2.12e-07 ***
timelate -1.05278 0.28026 -3.756 0.000172 ***
timemid 0.04003 0.23971 0.167 0.867384
lengthshort 0.67630 0.20588 3.285 0.001020 **
heightlow -0.83011 0.23204 -3.578 0.000347 ***
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 `
1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 54.0430 on 11 degrees of freedom
Residual deviance: 9.8815 on 7 degrees of freedom
```

Diagnostics

Conclusions

- Weak suggestion that *Grahami* relatively more numerous in mornings/midday
- Strong suggestion *Grahami* relatively more numerous on short perches
- Strong suggestion Grahami relatively more numerous on high perches

Over/under dispersion

- The variance of the binomial B(n,p) distribution is np(1-p), which is always less than the mean np.
- Sometimes the individuals having the same covariate pattern in a logistic regression may be correlated.
- This will result in the variance being greater than np(1-p) (if the correlation is +ve) or less than np(1-p) (if the correlation is - ve)

Over/under-dispersion

- If this is the case, we say the data are *over-dispersed* (if the variance is greater) or *under-dispersed* (if the variance is less)
- Consequence: standard errors will be wrong.
- Quick and dirty remedy: analyse as a binomial, but allow the "scale factor" to be arbitrary: this models the variance as

 ψ np(1-p) where y is the "scale factor"

(for the binomial, the scale factor is always 1)

Over-dispersed model

```
> model3<-glm(cbind(r,n-r)~time+length+height,</pre>
      family=quasibinomial,data=lizard.df)
> summary(model3)
Call:
glm(formula = cbind(r, n - r) ~ time + length + height,
family = quasibinomial, data = lizard.df)
> Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.49466 0.33128 4.512 0.00276 **
timelate -1.05278 0.32228 -3.267 0.01374 *
timemid 0.04003 0.27565 0.145 0.88864
lengthshort 0.67630 0.23675 2.857 0.02446 *
heightlow -0.83011 0.26683 -3.111 0.01706 *
_ _ _
(Dispersion parameter for quasibinomial family taken to be
1.322352
Null deviance: 54.0430 on 11 degrees of freedom
Residual deviance: 9.8815 on 7 degrees of freedom
```

Comparison

Binomial

	Estimate	Std. Error	z value	Pr(> z)	
(Intercept)	1.49466	0.28809	5.188	2.12e-07	***
timelate	-1.05278	0.28026	-3.756	0.000172	***
timemid	0.04003	0.23971	0.167	0.867384	
lengthshort	0.67630	0.20588	3.285	0.001020	**
heightlow	-0.83011	0.23204	-3.578	0.000347	***

Quasibinomial

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	1.49466	0.33128	4.512	0.00276	**
timelate	-1.05278	0.32228	-3.267	0.01374	*
timemid	0.04003	0.27565	0.145	0.88864	
lengthshort	0.67630	0.23675	2.857	0.02446	*
heightlow	-0.83011	0.26683	-3.111	0.01706	*