Multicollinearity

Tuan V. Nguyen Professor and NHMRC Senior Research Fellow Garvan Institute of Medical Research University of New South Wales Sydney, Australia

What we are going to learn

- Introduction to MLR
- Interaction
- Polynomial regression

What is multicollinearity?

- Multicollinearity exists whenever two or more of the predictors in a regression model are moderately or highly correlated.
- Multicollinearity happens more often than not in such observational studies.

Types of multicollinearity

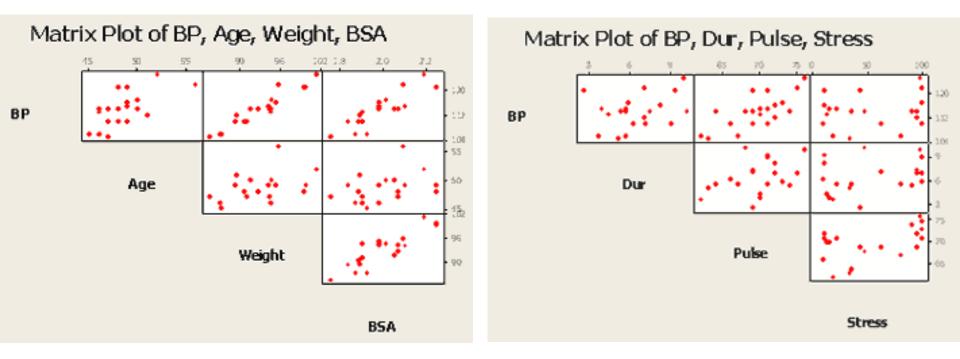
- Structural multicollinearity is a mathematical artifact caused by creating new predictors from other predictors — such as, creating the predictor x2 from the predictor x.
- Data-based multicollinearity, on the other hand, is a result of a poorly designed experiment, reliance on purely observational data, or the inability to manipulate the system on which the data are collected.

Consider the following study

Pt	BP	Age	Weight	BSA	Dur	Pulse	Stress
1	105	47	85.4	1.75	5.1	63	33
2	115	49	94.2	2.1	3.8	70	14
3	116	49	95.3	1.98	8.2	72	10
4	117	50	94.7	2.01	5.8	73	99
5	112	51	89.4	1.89	7	72	95
6	121	48	99.5	2.25	9.3	71	10
7	121	49	99.8	2.25	2.5	69	42
8	110	47	90.9	1.9	6.2	66	8
9	110	49	89.2	1.83	7.1	69	62
10	114	48	92.7	2.07	5.6	64	35
11	114	47	94.4	2.07	5.3	74	90
12	115	49	94.1	1.98	5.6	71	21
13	114	50	91.6	2.05	10.2	68	47
14	106	45	87.1	1.92	5.6	67	80
15	125	52	101.3	2.19	10	76	98
16	114	46	94.5	1.98	7.4	69	95
17	106	46	87	1.87	3.6	62	18
18	113	46	94.5	1.9	4.3	70	12
19	110	48	90.5	1.88	9	71	99
20	122	56	95.7	2.09	7	75	99

blood pressure (y = BP, in mm Hg); **age** (x1 = Age, in years); **weight** (x2 = Weight, in kg); **body surface area** (x3 = BSA, in sq m); **duration of hypertension** (x4 = Dur, in years); **basal pulse** (x5 = Pulse, in beats per minute); **stress index** (x6 = Stress)

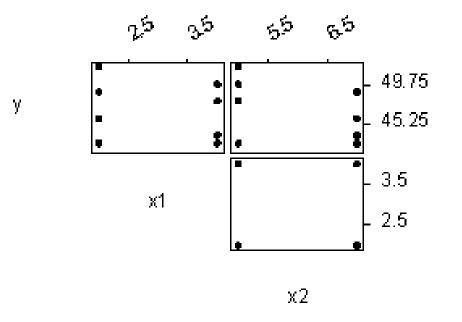
Inter-correlations among variables



	BP	Age	Weight	BSA	Duration	Pulse
Age	0.659					
Weight	0.950	0.407				
BSA	0.866	0.378	0.875			
Duration	0.293	0.344	0.201	0.131		
Pulse	0.721	0.619	0.659	0.465	0.402	
Stress	0.164	0.368	0.034	0.018	0.312	0.506

Uncorrelated predictors

• What is the effect on regression analyses if the predictors are perfectly uncorrelated ?



Pearson correlation of x1 and x2 = 0.000

Uncorrelated predictors

- What is the effect on regression analyses if the predictors are perfectly uncorrelated ?
- Regression model 1: x1 is the predictor

The regression	equation	is y = 48.8 ·	- 0.63 x1	
Predictor	Coef	SE Coef	т	P
Constant	48.750	4.025	12.11	0.000
x1	-0.625	1.273	-0.49	0.641

• Regresion model 1: x2 is the predictor

 The regression equation is y = 55.1 - 1.38 x2

 Predictor
 Coef
 SE Coef
 T
 P

 Constant
 55.125
 7.119
 7.74
 0.000

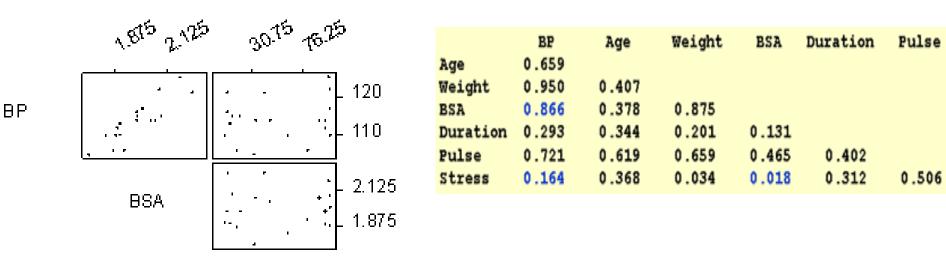
 x2
 -1.375
 1.170
 -1.17
 0.285

• Regresion model 1: x1 and x2 are predictors

The regression equation is $y = 57.0 - 0.63 \times 1 - 1.38 \times 2$

Predictor	Coef	SE Coef	т	P
Constant	57.000	8.486	6.72	0.001
x1	-0.625	1.251	-0.50	0.639
x2	-1.375	1.251	-1.10	0.322

What is the effect on regression analyses if the predictors are *nearly* uncorrelated?



The regression of the response y = BP on the predictor x6 = Stress:

What is the effect on regression analyses if the predictors are *nearly* uncorrelated?

• The regression of the **response** *y* = *BP* on the **predictor** *x*6 = *Stress*:

The regression equation is BP = 113 + 0.0240 Stress							
Predictor	Coef	SE Coef	т	P			
Constant	112.720	2.193	51.39	0.000			
Stress	0.02399	0.03404	0.70	0.490			
s = 5.502	R-Sq = 2	.7% R-S	q(adj) = 0	.0%			

• The regression of the **response** y = BP on the **predictor** $x^3 = BSA$:

The regression equation is BP = $45.2 + 34.4$ BSA							
Predictor	Coef	SE Coef	т	P			
Constant	45.183	9.392	4.81	0.000			
BSA	34.443	4.690	7.34	0.000			
S = 2.790	R-Sq = 7	5.0% R-Sq	(adj) = 7	3.6%			

What is the effect on regression analyses if the predictors are *nearly* uncorrelated?

 The regression of the response y = BP on the predictors x6 = Stress and x3 = BSA (in that order)

	sion equation + 0.0217 Stres			
Predictor	Coef	SE Coef	т	P
Constant	44.245	9.261	4.78	0.000
Stress	0.02166	0.01697	1.28	0.219
BSA	34.334	4.611	7.45	0.000

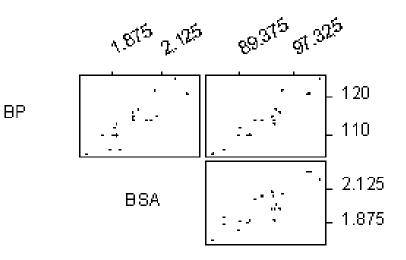
Finally, the regression of the response y = BP on the predictors x3 = BSA and x6= Stress (in that order)

The regression equation is BP = 44.2 + 34.3 BSA + 0.0217 Stress						
Predictor Constant	Coef 44.245	SE Coef 9.261	т 4.78	P 0.000		
BSA	34.334	4.611	7.45	0.000		
Stress	0.02166	0.01697	1.28	0.219		

What have we seen?

Model	<i>b</i> ₆	se(b ₆)	<i>b</i> ₃	se(b ₃)	Seq SS
x ₆ only	0.0240	0.0340			$SSR(x_6)$ 15.04
x3 only			34.443	4.690	<i>SSR</i> (x ₃) 419.86
<i>x</i> ₆ , <i>x</i> ₃ (in order)	0.0217	0.0170	34.334	4.611	$\frac{SSR(x_3 x_6)}{417.07}$
<i>x</i> ₃ , <i>x</i> ₆ (in order)	0.0217	0.0170	34.334	4.611	$\frac{SSR(x_6 x_3)}{12.26}$

- We don't get identical, but very *similar* slope estimates *b*3 and *b*6, regardless of the predictors in the model.
- The sum of squares *SSR*(*x*3) is not the same, but very *similar* to the sequential sum of squares *SSR*(*x*3|*x*6).
- The sum of squares *SSR*(*x*6) is not the same, but very *similar* to the sequential sum of squares *SSR*(*x*6|*x*3).



Weight

	BP	Age	Weight	BSA	Duration	Pulse
Age	0.659					
Weight	0.950	0.407				
BSA	0.866	0.378	0.875			
Duration	0.293	0.344	0.201	0.131		
Pulse	0.721	0.619	0.659	0.465	0.402	
Stress	0.164	0.368	0.034	0.018	0.312	0.506

• The regression of the response *y* = *BP* on the predictor *x*2 = *Weight*.

The regression equation is BP = 2.21 + 1.20 Weight							
Predictor	Coef	SE Coef	т	P			
Constant	2.205	8.663	0.25	0.802			
Weight	1.20093	0.09297	12.92	0.000			
s = 1.740	R-Sq = 9	0.3% R-S	q(adj) = 8	9.7%			

The regression of the response y = BP on the predictor x3 = BSA

The regression equation is BP = 45.2 + 34.4 BSA							
Predictor	Coef	SE Coef	т	P			
Constant	45.183	9.392	4.81	0.000			
BSA	34.443	4.690	7.34	0.000			
S = 2.790	R-Sq = 7	5.0% R-Sq	((adj) = 7	3.6%			

 The regression of the response y = BP on the predictors x2 = Weight and x3 = BSA (in that order)

The regression equation is BP = 5.65 + 1.04 Weight + 5.83 BSA							
Predictor Constant	Coef 5.653	SE Coef 9.392	т 0.60	P 0.555			
Weight	1.0387	0.1927	5.39	0.000			
BSA	5.831	6.063	0.96	0.350			

 the regression of the response y = BP on the predictors x3 = BSA and x2 = Weight (in that order):

The regression equation is BP = 5.65 + 5.83 BSA + 1.04 Weight							
Predictor Constant	Coef 5.653	SE Coef 9.392	т 0.60	P 0.555			
BSA	5.831	6.063	0.96	0.350			
Weight	1.0387	0.1927	5.39	0.000			

• Let's summarize the results in a table:

Model	b ₂	se(b ₂)	b ₃	se(b ₃)	Seq SS
x ₂ only	1.2009	0.0930			SSR(x ₂) 505.47
x ₃ only			34.443	4.690	SSR(x ₃) 419.86
x ₂ , x ₃ (in order)	1.0387	0.1927	5.831	6.063	SSR(x ₃ x ₂) 2.81
x ₃ , x ₂ (in order)	1.0387	0.1927	5.831	6.063	SSR(x ₂ x ₃) 88.43

• Effect #1. When predictor variables are correlated, the estimated regression coefficient of any one variable depends on which other predictor variables are included in the model

Variables in model	<i>b</i> ₂	<i>b</i> ₃
x_2	1.20	
<i>x</i> ₃		34.4
x_2, x_3	1.04	5.83

- If x3 = BSA is the only predictor included in our model, we claim that for every additional one square meter increase in body surface area (BSA), bloodpressure (BP) increases by 34.4 mm Hg.
- On the other hand, if x2 = Weight and x3 = BSA are both included in our model, we claim that for every additional one square meter increase in body surface area (BSA), bloodpressure (BP) increases by only 5.83 mm Hg.

• Effect #2. When predictor variables are correlated, the precision of the estimated regression coefficients decreases as more predictor variables are added to the model

Variables in model	$se(b_2)$	se(b ₃)
x_2	0.093	
<i>x</i> ₃		4.69
x_2, x_3	0.193	6.06

- The standard error for the estimated slope b2 obtained from the model including both x2 = Weight and x3 = BSA is about double the standard error for the estimated slope b2 obtained from the model including only x2 = Weight.
- the standard error for the estimated slope b3 obtained from the model including both x2 = Weight and x3 = BSA is about 30% larger than the standard error for the estimated slope b3 obtained from the model including only x3 = BSA.

- Effect #3. When predictor variables are correlated, the marginal contribution of any one predictor variable in reducing the error sum of squares varies depending on which other variables are already in the model.
- regressing the response y = BP on the predictor x2 = Weight, we obtain SSR(x2) = 505.47.
- regressing the response y = BP on the two predictors x3 = BSA and x2 = Weight (in that order), we obtain SSR(x2|x3) = 88.43.

- Effect #4. When predictor variables are correlated, hypothesis tests for $\beta k = 0$ may yield different conclusions depending on which predictor variables are in the model. (This effect is a direct consequence of the three previous effects.)
- The regression of the response *y* = *BP* on the predictor *x*3 = *BSA*:

The regress: BP = $45.2 +$	ion equation 34.4 BSA	is		
Predictor	Coef	SE Coef	т	P
Constant	45.183	9.392	4.81	0.000
BSA	34.443	4.690	7.34	0.000

• The regression of the response y = BP on the predictor $x^2 = Weight$.

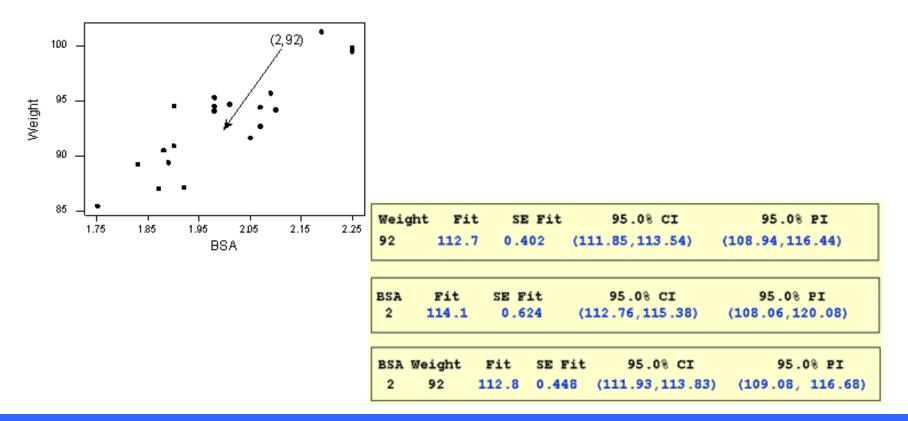
The regression equation is BP = 2.21 + 1.20 Weight Predictor SE Coef Coef т Р Constant 2.205 8.663 0.25 0.802 1.20093 0.09297 12.92 0.000 Weight

And, the regression of the response y = BP on the predictors $x^2 = Weight$ and $x^3 = BSA$

 And, the regression of the response y = BP on the predictors x2 = Weight and x3 = BSA

The regression equation is BP = 5.65 + 1.04 Weight + 5.83 BSA								
Predictor	Coef	SE Coef	Т	Р				
Constant	5.653	9.392	0.60	0.555				
Weight	1.0387	0.1927	5.39	0.000				
BSA	5.831	6.063	0.96	0.350				

• Effect #5. High multicollinearity among predictor variables does not prevent good, precise predictions of the response within the scope of the model.



Detection of collinearity

- Variance inflation factor (VIF)
- For the model in which x_k is the only predictor

$$\mathbf{y}_i = \beta_0 + \beta_k \mathbf{x}_{ik} + \varepsilon_i$$

• it can be shown that the variance of the estimated coefficient b_k is:

$$Var(\boldsymbol{b}_{\boldsymbol{k}})_{\min} = \frac{\sigma^2}{\sum_{\boldsymbol{i}=1}^n (\boldsymbol{x}_{\boldsymbol{i}\boldsymbol{k}} - \boldsymbol{\bar{x}}_{\boldsymbol{k}})^2}$$

• Let's consider such a model with correlated predictors:

$$y_i = \beta_0 + \beta_1 x_{i1} + \dots + \beta_k x_{ik} + \dots + \beta_{p-1} x_{i,p-1} + \varepsilon_i$$

• It can be shown that the variance of b_k is

$$Var(b_{k}) = \frac{\sigma^{2}}{\sum_{i=1}^{n} (x_{ik} - \overline{x}_{k})^{2}} \times \frac{1}{1 - R_{k}^{2}}$$

Variance inflation factor (VIF)

• How much larger? To answer this question, all we need to do is take the ratio of the two variances. Doing so, we obtain:

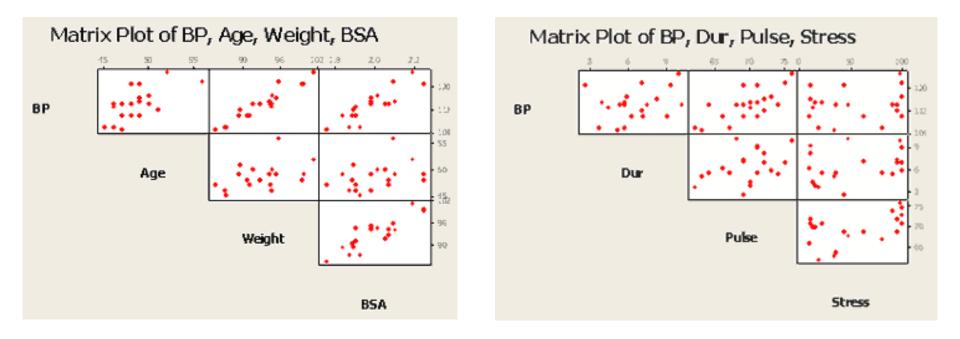
$$\frac{Var(\boldsymbol{b}_{\boldsymbol{k}})}{Var(\boldsymbol{b}_{\boldsymbol{k}})_{\min}} = \frac{\left(\frac{\sigma^2}{\sum \left(\boldsymbol{x}_{i\boldsymbol{k}} - \overline{\boldsymbol{x}}_{\boldsymbol{k}}\right)^2} \times \frac{1}{1 - R_{\boldsymbol{k}}^2}\right)}{\left(\frac{\sigma^2}{\sum \left(\boldsymbol{x}_{i\boldsymbol{k}} - \overline{\boldsymbol{x}}_{\boldsymbol{k}}\right)^2}\right)} = \frac{1}{1 - R_{\boldsymbol{k}}^2}$$

• The above quantity is what is deemed the variance inflation factor for the *kth* predictor. That is:

$$VIF_k = \frac{1}{1 - R_k^2}$$

Where R_k^2 is the R^2 -value obtained by regressing the k^{th} predictor on the remaining predictors.

VIF - Example



	BP	Age	Weight	BSA	Duration	Pulse
Age	0.659					
Weight	0.950	0.407				
BSA	0.866	0.378	0.875			
Duration	0.293	0.344	0.201	0.131		
Pulse	0.721	0.619	0.659	0.465	0.402	
Stress	0.164	0.368	0.034	0.018	0.312	0.506

VIF - Example

• Regressing *y* = BP on all six of the predictors and asking Minitab to report the variance inflation factors, we obtain

Predictor	Coef	SE Coef	т	P	VIF
Constant	-12.870	2.557	-5.03	0.000	
Age	0.70326	0.04961	14.18	0.000	1.8
Weight	0.96992	0.06311	15.37	0.000	8.4
BSA	3.776	1.580	2.39	0.033	5.3
Dur	0.06838	0.04844	1.41	0.182	1.2
Pulse	-0.08448	0.05161	-1.64	0.126	4.4
Stress	0.005572	0.003412	1.63	0.126	1.8
S = 0.407	2 R-	Sq = 99.6%	R-Sq	(adj) = 99	9.4%

VIF - Example

Now, let's verify the calculation of the VIF for the predictor *Weight*.
 Regressing the predictor x2 = *Weight* on the remaining five predictors

Predictor	Coef	SE Coef	т	P	VIF
Constant	19.674	9.465	2.08	0.057	
Age	-0.1446	0.2065	-0.70	0.495	1.7
BSA	21.422	3.465	6.18	0.000	1.4
Dur	0.0087	0.2051	0.04	0.967	1.2
Pulse	0.5577	0.1599	3.49	0.004	2.4
Stress	-0.02300	0.01308	-1.76	0.101	1.5
s = 1.725	R-	sq = 88.1%	R-S	Sq(adj) =	83.9%

$$VIF_{Weight} = \frac{Var(b_{Weight})}{Var(b_{Weight})_{\min}} = \frac{1}{1 - R_{Weight}^2} = \frac{1}{1 - 0.881} = 8.4$$

What to do with multicollinearity

- Reducing data-based multicollinearity
- Reducing structural multicollinearity
- The hierarchical approach to model fitting