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What we are going to learn

• Interaction effects
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Birthweight data

• File: birthsmokers.txt

• N = 32 births 

• Baby's birth weight is related mother's smoking 

habits during pregnancy

• Response (y): birth weight in grams of baby 

• Potential predictor (x1): 

– smoking status of mother (yes or no) 

– Potential predictor (x2): length of gestation in weeks 
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Birthweight data

• The model: 

yi = b0 +b1xi1 +b2xi2 +ei

• yi is the birth weight of  baby i in grams

• xi1 is the length of  gestation of  baby i in weeks

• xi2 = 1, if  baby i's mother smoked and xi2 = 0, if  not

• εi error terms follow a normal distribution with mean 

0 and equal variance σ2.
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Birthweight data

• The model: 

yi = b0 +b1xi1 +b2xi2 +ei

• The rehression equation based on actual data

Weight = -2390 + 143*Gest – 245*Smoking
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Birthweight data

• The rehression equation based on actual data

Weight = -2390 + 143*Gest – 245*Smoking

Do you think the two predictors — the length of gestation and the smoking behavior of 

the mother — interact? That is, do you think the effect of the gestation length on mean 

birth weight depends on whether or not the mother is a smoker? Or, do you think the 

effect of smoking on mean birth weight depends on the length of gestation?  

We can take a look at the estimated regression equation to arrive at reasonable answers to 

these questions. Upon analyzing the sample of n = 32 births, Minitab reports that: 

The regression equation is: 

 

And, a plot of the estimated regression equation looks like: 

 

The circles and solid line represent the data and estimated function for non-smoking 

mothers (0), while the plus signs and dashed line represent the data and estimated 

function for smoking mothers (1).  

Now, in light of the plot, let's investigate those questions again: 

· Does the effect of the gestation length on mean birth weight depend on 

whether or not the mother is a smoker? The answer is no! Regardless of 

whether or not the mother is a smoker, for each additional one-week of gestation, 

the mean birth weight is predicted to increase by 143 grams. This lack of 

interaction between the two predictors is exhibted by the parallelness of the two 

lines. 

· Does the effect of smoking on mean birth weight depend on the length of 

gestation? The answer is no! Regardless of the length of gestation, the mean birth 

No interaction effects!
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Interaction effects

• Depression.txt, 36 patients with depression  

• Comparing the effectiveness of 3 treatments for 

severe depression (A, B, and C)

• yi = measure of the effectiveness of the treatment for 

individual i

• xi1 = age (in years) of individual i

• xi2 = 0 if individual i received treatment A, 1 if 

treatment B, 2 if treatment C
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Interaction effects

 

The open circles represent the data for individuals receiving treatment A, the solid dots 

represent the data for individuals receiving treatment B, and the asterisks represent the 

data for individuals receiving treatment C. 

In the previous example, the two estimated regression functions had the same slopes —

that is, they were parallel. If you tried to draw three best fitting lines through the data of 

this example, do you think the slopes of your lines would be the same? Probably not! In 

this case, we need to include what are called "interaction terms" in our formulated 

regression model.  

A (second-order) multiple regression model with interaction terms is: 

 

where: 

· yi = measure of the effectiveness of the treatment for individual i 

· xi1 = age (in years) of individual i 

· xi2 = 1 if individual i received treatment A and 0, if not  

· xi3 = 1 if individual i received treatment B and 0, if not 

and the independent error terms εi follow a normal distribution with mean 0 and equal 

variance σ
2
. Perhaps not surprisingly, the terms xi1xi2 and xi1xi3 are the interaction terms in 

the model. 

Let's investigate our formulated model to discover in what way the predictors have an 

"interaction effect" on the response. We start by determining the formulated regression 

function for each of the three treatments. In short —after a little bit of algebra 
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Interaction model 

• The “main effect” regression model

yi = b0 +b1xi1 +b2xi2 +ei

• The “interaction effect” regression model

yi = b0 +b1xi1 +b2xi2 +b3xi1xi2 +ei
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R codes

dep = 

read.table("/Users/tuannguyen/Documents/_Viet

nam2012/Can Tho /Datasets/depression.txt", 

header=T)

attach(dep)

res = lm(y ~ age+TRT)

summary(res)
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Results of main effect model 

Coefficients:

Estimate Std. Error t value Pr(>|t|)    

(Intercept)  32.54335    3.58105   9.088 2.23e-10 ***

age           0.66446    0.06978   9.522 7.42e-11 ***

TRTB         -9.80758    2.46471  -3.979 0.000371 ***

TRTC        -10.25276    2.46542  -4.159 0.000224 ***

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 

‘ ’ 1 

Residual standard error: 6.035 on 32 degrees of freedom

Multiple R-squared: 0.784, Adjusted R-squared: 0.7637 

F-statistic: 38.71 on 3 and 32 DF,  p-value: 9.287e-11
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Interpretation of the main model 

(Intercept)  32.54335    3.58105   9.088 2.23e-10 ***

age           0.66446    0.06978   9.522 7.42e-11 ***

TRTB         -9.80758    2.46471  -3.979 0.000371 ***

TRTC        -10.25276    2.46542  -4.159 0.000224 ***

Treatment A:  y = 32.54 + 0.66*age

Treatment B:  y = 32.54 + 0.66*age – 9.81

= 22.73 + 0.66*age

Treatment C:  y = 32.54 + 0.66*age – 10.25

= 22.29 + 0.66*age
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The model in graphical format

· Is there a treatment effect? Minitab reports that the P-value for testing H0: β2 = 0 

is 0.125. There is insufficient evidence at the 0.05 level to conclude that there is a 

treatment effect. Again, this conclusion contradicts what we'd expect from the 

plot. 

A side note. By conducting the above two tests independently, we increase our chance of 

making at least one Type I error. Since we are interested in answering both research 

questions, we could minimize our chance of making a Type I error by conducting the 

partial F-test for testing, H0: β1 = β2 = 0, that is, that both parameters are simultaneously 

zero. 

Now, let's try to understand why our conclusions don't agree with our intuition based on 

the plot. If we plug the values 0 and 1 into the group variable of the estimated regression 

equation —  —we obtain two parallel lines —one for each group. A plot 

of the resulting estimated regression functions: 

 

suggest that the lines don't fit the data very well. By leaving the interaction term out of 

the model, we have forced the "best fitting lines" to be parallel, when they clearly 

shouldn't be. The residuals versus fits plot: 
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Residual analysis of “main effect” model

 

provides further evidence that our formulated model does not fit the data well. We now 

know that the resulting cost is conclusions that just don't make sense. 

Let's analyze the data again, but this time with a more appropriately formulated model. 

Consider the regression model with the interaction term: 

 

where: 

· yi is the response 

· xi1 is the quantitative predictor you want to "adjust for " 

· xi2 is the qualitative group predictor, where 0 denotes the first group and 1 denotes 

the second group 

· xi1xi2 is the "missing" interaction term  

and the independent error terms εi follow a normal distribution with mean 0 and equal 

variance σ
2
. 

Upon fitting the data to the model with an interaction term, Minitab reports:  

 

If we now plug the values 0 and 1 into the group variable of the estimated regression 

equation —  —we obtain two intersecting lines —one for each group:  
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R codes for interaction model 

dep = 

read.table("/Users/tuannguyen/Documents/_Viet

nam2012/Can Tho /Datasets/depression.txt", 

header=T)

attach(dep)

int = lm(y ~ age+TRT+age:TRT)

summary(int)
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Results of interaction effect model 

Coefficients:

Estimate Std. Error t value Pr(>|t|)    

(Intercept)  47.51559    3.82523  12.422 2.34e-13 ***

age           0.33051    0.08149   4.056 0.000328 ***

TRTB        -18.59739    5.41573  -3.434 0.001759 ** 

TRTC        -41.30421    5.08453  -8.124 4.56e-09 ***

age:TRTB      0.19318    0.11660   1.657 0.108001    

age:TRTC      0.70288    0.10896   6.451 3.98e-07 ***

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 

‘ ’ 1 

Residual standard error: 3.925 on 30 degrees of freedom

Multiple R-squared: 0.9143, Adjusted R-squared: 0.9001 

F-statistic: 64.04 on 5 and 30 DF,  p-value: 4.264e-15 
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“Interpretation” of model

Estimate Std. Error t value Pr(>|t|)    

(Intercept)  47.51559    3.82523  12.422 2.34e-13 ***

age 0.33051    0.08149   4.056 0.000328 ***

TRTB        -18.59739    5.41573  -3.434 0.001759 ** 

TRTC        -41.30421    5.08453  -8.124 4.56e-09 ***

age:TRTB 0.19318    0.11660   1.657 0.108001    

age:TRTC 0.70288    0.10896   6.451 3.98e-07 ***

The model is:

If  treatment=A, then y = 47.51 + 0.33*age

If  treatment=B, then y = 47.51 + 0.33*age – 18.60 + 0.19*age

= 28.91 + 0.52*age 

If  treatment=C, then y = 47.51 + 0.33*age – 41.30 + 0.70*age

= 6.21 + 1.03*age 
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“Interpretation” of model

yA = 47.51 + 0.33*age

yB = 28.91 + 0.52*age 

yC = 6.21 + 1.03*age 

 

What do the estimated slopes tell us? 

· For patients in this study receiving treatment A, the effectiveness of the treatment 

is predicted to increase 0.33 units for every additional year in age. 

· For patients in this study receiving treatment B, the effectiveness of the treatment 

is predicted to increase 0.52 units for every additional year in age. 

· For patients in this study receiving treatment C, the effectiveness of the treatment 

is predicted to increase 1.03 units for every additional year in age. 

In short, the effect of age on the predicted treatment effectiveness depends on the 

treatment given. That is, age appears to interact with treatment in its impact on treatment 

effectiveness. The interaction is exhibited graphically by the "nonparallelness" (is that a 

word?) of the lines. 

Of course, our primary goal is not to draw conclusions about this particular sample of 

depressed individuals, but rather about the entire population of depressed individuals. 

That is, we want to use our estimated model to draw conclusions about the larger 

population of depressed individuals. Before we do so, however, we first should evaluate 

the model. 

The residuals versus fits plot: 
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Residual analysis 

 

exhibits all of the "good" behavior, suggesting that the model fits well, there are no 

obvious outliers, and the error variances are indeed constant. And, the normal probability 
plot:  

 

exhibits linear trend and a large P-value, suggesting that the error terms are indeed 

normally distributed.  

Having successfully built —formulated, estimated, and evaluated —a model, we now 

can use the model to answer our research questions. Let's consider two different 
questions that we might want answered.  

First research question. For every age, is there a difference in the mean effectiveness 

for the three treatments? As is usually the case, our formulated regression model helps 



Workshop on Analysis of  Clinical Studies – Can Tho University of  Medicine and Pharmacy – April 2012

Normal plot

 

exhibits all of the "good" behavior, suggesting that the model fits well, there are no 

obvious outliers, and the error variances are indeed constant. And, the normal probability 

plot:  

 

exhibits linear trend and a large P-value, suggesting that the error terms are indeed 

normally distributed.  

Having successfully built —formulated, estimated, and evaluated —a model, we now 

can use the model to answer our research questions. Let's consider two different 

questions that we might want answered.  

First research question. For every age, is there a difference in the mean effectiveness 

for the three treatments? As is usually the case, our formulated regression model helps 


