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Contents

• To describe some techniques for selecting the 

explanatory variables for a regression

• To describe the consequences of making an 

incorrect choice

• To apply these techniques to an example
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Variable Selection

• Often there are several (perhaps a large number) of 

potential explanatory variables available to build a 

regression model. Which ones should we use?

• We could, of course, use them all. However, this 

turns out to be not such a good idea.
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Overfitting

• If we put too many variables in the model, including 

some unrelated to the response, we are overfitting. 

Consequences are:

– Fitted model is not good for prediction of new data –

prediction error is inflated

– Model is too elaborate, models ―noise‖ that will not be the 

same for new data
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Underfitting

• If we put too few variables in the model, leaving out 

variables that could help explain the response, we 

are underfitting. Consequences:

– Fitted model is not good for prediction of new data –

prediction is biased

– Regression coefficients are biased

– Estimate of error variance is too large
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Example

• Suppose we have some data  which follow a 

quadratic model

Y = 1 + 0.5 x + 4 x2 + N(0,1)

where the x’s are uniform on [0,1]

The next slide shows the data, with the true regression 

shown as a dotted line.
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Under-fitting and over-fitting

• Suppose we fit a straight line. This is underfitting, 

since we are not fitting the squared term. The fitted 

line (in green) is shown on the next slide.

• Alternatively, we could fit a 6-degree polynomial. 

This is overfitting, since there are unnecessary 

terms in x3, x4, x5 and x6. The fitted polynomial is 

shown in blue on the next slide. Fit using                     

lm(y ~ poly(x,6))
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Points to note

• Straight line is biased: can’t capture the curvature in 
the true regression

• 6-degree line: too variable, attracted to the errors 
which would be different for a new set of data

• Moral: For good models we need to choose variables 
wisely to avoid overfitting and underfitting. 

This is called variable selection



Workshop on Analysis of  Clinical Studies – Can Tho University of  Medicine and Pharmacy – April 2012

Methods for variable selection

• If we have k variables, and assuming a constant term 

in each model, there are   2k-1 possible subsets of 

variables (not counting the null model with no 

variables)

• How do we select a subset for our model?

• Two main approaches: stepwise methods and all 

possible regressions (APR) 
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Stepwise Regression Procedure
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Stepwise regression algorithm

Start

Compute F stat and P-value 

for each independent 

variable NOT in the model

Any P-value > 

alpha (0.15) to 

remove? 

Compute F stat and P-value 

for each independent 

variable in the model

Any P-value < 

alpha (0.15) to 

remove? 

STOP

Indep variable with smallest 

P-value is entered into the 

model

Indep variable 

with largest P-

value is removed 

from the model

No

Yes

No

Yes
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Forward selection algorithm

Start with NO indep variable 

in the model

Any P-value < 

alpha (0.15) to 

remove? 

Indep variable with smallest 

P-value is entered into the 

model

Compute F stat and P-value 

for each independent 

variable NOT in the model

Yes

No
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Backward elemination algorithm

Start with ALL indep

variables in the model

Any P-value < 

alpha (0.15) to 

remove? 

Indep variable with smallest 

P-value is entered into the 

model

Compute F stat and P-value 

for each independent 

variable NOT in the model

Yes

No
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Stepwise selection procedure

• Specify an Alpha-to-Enter significance level. Many software 

packages set this significance level by default to αE = 0.15. 

• Specify an Alpha-to-Remove significance level. Again, many software 

packages set this significance level by default to αR = 0.15.

• Step #1. Once we've specified the starting significance levels, 

then we 

– Fit each of the one-predictor models — that is, regress y on x1, 

regress y on x2, ..., and regress y on xp-1. 

– Of those predictors whose t-test P-value is less than αE = 0.15, 

the first predictor put in the stepwise model is the predictor 

that has the smallest t-test P-value. 

– If no predictor has a t-test P-value less than αE = 0.15, stop.
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Stepwise selection procedure

• Step #2. Then: 

– Suppose x1 had the smallest t-test P-value below αE = 0.15 and therefore 
was deemed the "best" one predictor arising from the the first step.

– Now, fit each of the two-predictor models that include x1 as a predictor —
that is, regress y on x1and x2, regress y on x1 and x3, ..., and regress y on x1

and xp-1. 

– Of those predictors whose t-test P-value is less than αE = 0.15, the second 
predictor put in the stepwise model is the predictor that has the smallest t-
test P-value. 

– If no predictor has a t-test P-value less than αE = 0.15, stop. The model with 
the one predictor obtained from the first step is your final model.

– But, suppose instead that x2 was deemed the "best" second predictor and it 
is therefore entered into the stepwise model.

– Now, since x1 was the first predictor in the model, step back and see if 
entering x2 into the stepwise model somehow affected the significance of 
the x1 predictor. That is, check the t-test P-value for testing β1 = 0. If the t-
test P-value for β1 = 0 has become not significant — that is, the P-value is 
greater than αR = 0.15 — remove x1 from the stepwise model. 
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Stepwise selection procedure
•Step #3. Then:

– Suppose both x1 and x2 made it into the two-predictor stepwise model. 

– Now, fit each of the three-predictor models that include x1 and x2 as 

predictors — that is, regress y on x1, x2, and x3, regress y on x1, x2, and x4, ..., 

and regress y on x1, x2, and xp-1.

– Of those predictors whose t-test P-value is less than αE = 0.15, the third 

predictor put in the stepwise model is the predictor that has the smallest t-
test P-value. 

– If no predictor has a t-test P-value less than αE = 0.15, stop. The model 

containing the two predictors obtained from the second step is your final 

model.

– But, suppose instead that x3 was deemed the "best" third predictor and it is 

therefore entered into the stepwise model.

– Now, since x1 and x2 were the first predictors in the model, step back and see 

if entering x3 into the stepwise model somehow affected the significance of 

the x1 and x2 predictors. That is, check the t-test P-values for testing β1 = 0 

and β2 = 0. If the t-test P-value for either β1 = 0 or β2 = 0 has become not 

significant — that is, the P-value is greater than αR = 0.15 — remove the 

predictor from the stepwise model. 
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Stepwise selection procedure

• Stopping the procedure. Continue the steps as 

described above until adding an additional predictor 

does not yield a t-test P-value below αE = 0.15. 
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Stepwise selection: example

• To starting our stepwise regression procedure, let's set our Alpha-to-

Enter significance level at αE = 0.15, and let's set our Alpha-to-Remove 

significance level at αR = 0.15. Now, regressing y on x1, regressing y
on x2, regressing y on x3, and regressing y on x4, we obtain: 
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Stepwise selection: example

• Now, following step #2, we fit each of the two-predictor models that 

include x4 as a predictor — that is, we regress y on x4 and x1, regress 

y on x4 and x2, and regress y on x4 and x3, obtaining: 
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Stepwise selection: example

• Now, following step #3, we fit each of the three-predictor models that 

include x1 and x4 as predictors — that is, we regress y on x4, x1, and 

x2; and we regress y on x4, x1, and x3, obtaining 
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Stepwise selection: example

• Now, since x1 and x4 were the first predictors in the model, we must 

step back and see if entering x2 into the stepwise model affected the 

significance of the x1 and x4 predictors. Indeed, it did — the t-test P-

value for testing β4 = 0 is 0.205, greater than αR = 0.15. Therefore, we 

remove the predictor x4 from the stepwise model, leaving us with the 

predictors x1 and x2 in our stepwise model: 

Now, we proceed fitting each of the three-predictor models that include x1 and 

x2 as predictors — that is, we regress y on x1, x2, and x3; and we regress y on 

x1, x2, and x4, obtaining: 
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Stepwise selection: example

• Neither of the remaining predictors — x3 and x4 — are eligible for 

entry into our stepwise model, because each t-test P-value —

0.209 and 0.205, respectively — is greater than αE = 0.15. That is, 

we stop our stepwise regression procedure. Our final regression 

model, based on the stepwise procedure contains only the 

predictors x1 and x2:
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Stepwise selection: example

• Summary of steps:
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Be careful!

• The final model is not guaranteed to be optimal in any specified sense. 

• The procedure yields a single final model, although there are often 

several equally good models. 

• Stepwise regression does not take into account a researcher's 

knowledge about the predictors. It may be necessary to force the 

procedure to include important predictors.

• One should not over-interpret the order in which predictors are 

entered into the model. 

• One should not jump to the conclusion that all the important predictor 

variables for predicting y have been identified, or that all the 

unimportant predictor variables have been eliminated. It is, of course, 

possible that we may have committed a Type I or Type II error.

• Many t-tests for testing βk = 0 are conducted in a stepwise regression 

procedure. The probability is therefore high that we included some 

unimportant predictors or excluded some important predictors.
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All Possible Regressions
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All Possible Regressions

• For each subset, define a criterion of ―model 

goodness‖ which tries to balance over-fitting (model 

too complex) with under-fitting (model doesn’t fit very 

well).

• Calculate the criterion for each of the 2k-1 models

• Pick the best one according to the criterion.

• One difficulty: there are several possible criteria, and 

they don’t always agree.
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Possible criteria: R2

• Since R2 increases as we add more variables, 
picking the model with the biggest R2 will always 
select the model with all the variables. This will 
often result in overfitting.

• However, R2 is OK for choosing between models 
with the same number of variables.

• We need to modify R2 to penalize overly 
complicated models. One way is to use the 
adjusted R2 (p = number of coefficients in model)
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Interpretation

• Suppose we have 2 models: model A with p-1 variables 

and model B with an additional q variables (we say A is 

a submodel of B)

• Then the adjusted R2 is defined  so that   

where F is the F statistic for testing that model A is 

adequate. 

1ifonly  and if22   FRR qpp   
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Residual mean square (RMS)

• Recall the estimate of the error variance s2: 

estimated by s2=RSS/(n-p), sometimes called the 

residual mean square (RMS)

• Choose model with the minimum RMS

• We can show that this is equivalent to choosing the 

model with the biggest adjusted R2
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AIC and BIC

• These are criteria that balance goodness of fit (as measured by 

RSS) against model complexity (as measured by the number of 

regression coefficients)

• AIC (Akaike Information Criterion) is, up to a constant depending 

on n , AIC = n log(RSSp) + 2p

• Alternative version is AIC = RSS/RMSFull + 2p, equivalent to Cp

• BIC (Bayesian Information Criterion) is 

n log(RSSp) + p log n

• Small values = good model

• AIC tends to favour more complex models than BIC
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Criteria based on prediction error

• Our final set of criteria use an estimate of prediction 

error to evaluate models

• They measure how well a model predicts new data
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Mallow’s Cp: estimating prediction error

Suppose we have a model with p regression 

coefficients. ―Mallows Cp‖ provides an estimate of 

how well the model predicts new data, and is 

given by

np
RMS

RSS
Cp

FULL

p
 2

The subscript FULL refers to the “full model” with k 

variables. Small values of Cp with Cp about p are good. 

Warning: Ck+1=k+1 always, so don’t take this as 

evidence that the full model is good unless all the other 

Cp’s are bigger. 
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Mallow’s Cp : Interpretation

If the p-coefficient  model contains all the important 

explanatory variables, then RSSp is about the same 

as (n-p)s2. Moreover, EMSFULL will also be about the 

same as   s2. Thus
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Cp plot

• For each model, we plot Cp against p, with the line 

Cp= p added. 

• Points close to this line having small values of Cp

correspond to good models. 
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Estimating prediction error: Cross-validation

• Cp is not a very good estimate of prediction error

• If we have plenty of data, we split the data into 2 parts

– The “training set”, used to fit the model and 

construct the predictor

– The “test set”, used to estimate the prediction error

• Test set error (=prediction error) estimated by

• Choose model with smallest prediction error

21 )ˆ(
i

test set
i

yyn 
 Predicted value 

using training set

predictor with new 

data
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Estimating prediction error: Cross-validation (2)

• If we don’t have plenty of data, we randomly split 

the data into 10 parts. One part acts as a test set, 

the rest as the training set. We compute the 

prediction error from the test set as before.

• Repeat another 9 times, using a different 10th as the 

test set each time. Average the estimates to get a 

good estimate of prediction error

• Repeat for different “random splits”

• This is “10-fold cross-validation”. Can do 5-fold, or 

n-fold, but 10-fold seems to be best.
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Example: the fatty acid data

> fatty.lm <- lm(ffa ~ age + skinfold + weight, data = fatty.df)

> library(leaps)

> all.poss.regs(fatty.lm, Cp.plot=T)

rssp sigma2 adjRsq    Cp    AIC    BIC    CV age weight skinfold

1 0.910  0.051  0.380 2.406 22.406 24.397 0.114   0      1        0

2 0.794  0.047  0.427 2.062 22.062 25.049 0.107 1      1        0

3 0.791 0.049  0.394 4.000 24.000 27.983 0.117   1      1        1

The R function all.poss.regs does the business: eg 

for the fatty acid data NB This function requires the 

package “leaps”
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Example: the evaporation data

• This was discussed in Tutorial 2: the variables are 

– evap: the amount of  moisture evaporating from the soil in the 24 
hour period (response)

– maxst: maximum soil temperature over the 24 hour period

– minst: minimum soil temperature over the 24 hour period

– avst: average soil temperature over the 24 hour period

– maxat: maximum air temperature over the 24 hour period

– minat: minimum air temperature over the 24 hour period

– avat: average air temperature over the 24 hour period

– maxh: maximum humidity over the 24 hour period

– minh: minimum humidity over the 24 hour period

– avh: average humidity over the 24 hour period

– wind: average wind speed over the 24 hour period.
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Variable selection

• There are strong relationships between the variables, 

so we probably don’t need them all.  We can perform an 

all possible regressions analysis using the code

evap.df = read.table(evap.txt", header=T)

evap.lm = lm(evap~.,data=evap.df)

library(leaps)

all.poss.regs(evap~.,data=evap.df)
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Call:

lm(formula = evap ~ ., data = evap.df)

Coefficients:

Estimate Std. Error t value Pr(>|t|)   

(Intercept) -54.074877 130.720826  -0.414  0.68164   

avst          2.231782   1.003882   2.223  0.03276 *

minst         0.204854   1.104523   0.185  0.85393   

maxst        -0.742580   0.349609  -2.124  0.04081 *

avat          0.501055   0.568964   0.881  0.38452   

minat         0.304126   0.788877   0.386  0.70219   

maxvat        0.092187   0.218054   0.423  0.67505   

avh           1.109858   1.133126   0.979  0.33407   

minh          0.751405   0.487749   1.541  0.13242   

maxh         -0.556292   0.161602  -3.442  0.00151 **

wind          0.008918   0.009167   0.973  0.33733 

Residual standard error: 6.508 on 35 degrees of freedom

Multiple R-Squared: 0.8463,     Adjusted R-squared: 0.8023

F-statistic: 19.27 on 10 and 35 DF,  p-value: 2.073e-11 
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> library(leaps)  # NB Load leaps library

> all.poss.regs(evap~., data=evap.df)

rssp sigma2 adjRsq     Cp    AIC    BIC      CV

1  3071.255 69.801  0.674 30.519 76.519 80.177 308.052

2  2101.113 48.863  0.772  9.612 55.612 61.098 208.962

3  1879.949 44.761  0.791  6.390 52.390 59.705 191.622

4  1696.789 41.385  0.807  4.065 50.065 59.208 206.449

5  1599.138 39.978  0.813  3.759 49.759 60.731 223.113

6  1552.033 39.796 0.814 4.647 50.647 63.448 233.692

7  1521.227 40.032  0.813  5.920 51.920 66.549 260.577

8  1490.602 40.287  0.812  7.197 53.197 69.654 271.771

9  1483.733 41.215  0.808  9.034 55.034 73.321 302.781

10 1482.277 42.351  0.802 11.000 57.000 77.115 325.410

avst minst maxst avat minat maxat avh minh maxh wind

1      0     0    0     0     0    0    0    0   1    0

2      0     0    0     0     0    1    0    0   1    0

3      0     0    0     0     0    1    0    0   1    1

4      1     0    1     0     0    1    0    0   1    0

5      1     0    1     0     0    1    0    1   1    0

6      1     0    1     0     0    1    0    1   1    1

7      1     0    1     1     0    0    1    1   1    1

8      1     0    1     1     0    1    1    1   1    1

9      1     0    1     1     1    1    1    1   1    1

10     1     1    1     1     1    1    1    1   1    1
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> sub.lm = lm(evap~avat + avh + wind,data=evap.df)

> summary(sub.lm)

Estimate Std. Error t value Pr(>|t|)    

(Intercept) 123.901800  24.624411   5.032 9.60e-06 ***

avat          0.222768   0.059113   3.769 0.000506 ***

avh          -0.342915   0.042776  -8.016 5.31e-10 ***

wind          0.015998   0.007197   2.223 0.031664 *  

Residual standard error: 6.69 on 42 degrees of freedom

Multiple R-Squared: 0.805,      Adjusted R-squared: 0.7911 

F-statistic:  57.8 on 3 and 42 DF,  p-value: 5.834e-15 

Full model was 

0.8463 
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Model building strategy

• Step1: Determine your goal:

– For predictive reasons — that is, the model will be used to 
predict the response variable from a chosen set of 
predictors. 

– For theoretical reasons — that is, the researcher wants to 
estimate a model based on a known theoretical relationship 
between the response and predictors.

– For control purposes — that is, the model will be used to 
control a response variable by manipulating the values of the 
predictor variables. 

– For inferential reasons — that is, the model will be used to 
explore the strength of the relationships between the 
response and the predictors.

– For data summary reasons — that is, the model will be used 
merely as a way to summarize a large set of data by a single 
equation. 
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Model building strategy

• Step 2: Decide which predictor variables and 

response variable on which to collect the data. 

Collect the data.

• Step 3: Exploration of data

– On a univariate basis, check for outliers, gross data 

errors, and missing values. 

– Study bivariate relationships to reveal other outliers, to 

suggest possible transformations, and to identify possible 

multicollinearities. 
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Model building strategy

• Step 4: Randomly divide the data into a training set 

and a test set: 

– The training set, with at least 15-20 error degrees of 

freedom, is used to estimate the model. 

– The test set is used for cross-validation of the fitted 

model.

• Step 5: Using the training set, identify several 

candidate models: 

– Use best subsets regression.

– Use stepwise regression, which of course only 

yields one model unless different alpha-to-remove 

and alpha-to-enter values are specified. 
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Model building strategy

• Step 6: Select and evaluate a few "good" models: 

– Select the models based on the four criteria we learned, as 
well as the number and nature of the predictors. 

– Evaluate the selected models for violation of the model 
conditions. 

– If none of the models provide a satisfactory fit, try something 
else, such as collecting more data, identifying different 
predictors, or formulating a different type of model.

• Step 7 (final): Select the final model

– Compare the competing models by cross-validating them 
against the test data. 

– The model with a larger cross-validation R2 is abetter 
predictive model. 

– Consider residual plots, outliers, parsimony, relevance, and 
ease of measurement of predictors.  


