Descriptive analysis of continuous variables

Tuan V. Nguyen Professor and NHMRC Senior Research Fellow Garvan Institute of Medical Research University of New South Wales Sydney, Australia

Some old words

"If it were not for the great variability among individuals, medicine might be a Science, not an Art"

William Osler, 1882

The Principles and Practice of Medicine

Normal (Gaussian) distribution

Given a series of values *xi* (*i* = 1, ..., *n*): *x1*, *x2*, ..., *xn*, the mean is:

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

• **Study 1**: the color scores of 6 consumers are: 6, 7, 8, 4, 5, and 6. The mean is:

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{6+7+8+4+5+6}{6} = \frac{36}{6} = 6$$

• **Study 2**: the color scores of 4 consumers are: 10, 2, 3, and 9. The mean is:

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{10 + 2 + 3 + 9}{4} = \frac{24}{4} = 6$$

Variation

- The mean does not adequately describe the data. We need to know the *variation* in the data.
- An obvious measure is the sum of *difference* from the mean.
- For study 1, the scores 6, 7, 8, 4, 5, and 6, we have:
 (6-6) + (7-6) + (8-6) + (4-6) + (5-6) + (6-6)

$$= 0 + 1 + 2 - 2 - 1 + 0$$

= 0

NOT SATISFACTORY!

Sum of squares

- We need to make the difference positive by squaring them. This is called "Sum of squares" (SS)
- For study 1: 6, 7, 8, 4, 5, 6, we have:
 SS = (6-6)² + (7-6)² + (8-6)² + (4-6)² + (5-6)² + (6-6)²
 = 10
- For study 2: 10, 2, 3, 9, we have:
 SS = (10-6)² + (2-6)² + (3-6)² + (9-6)² = 50
- This is better!
- But it does not take into account sample size n.

Variance

- We have to divide the SS by sample size *n*. But in each square we use the mean to calculate the square, so we lose 1 degree of freedom.
- Therefore the correct denominator is n-1. This is called variance (denoted by s²)

$$s^{2} = \frac{(x_{1} - \overline{x})^{2} + (x_{2} - \overline{x})^{2} + \dots + (x_{n} - \overline{x})^{2}}{n - 1}$$

• Or, in the sum notation:

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$$

Variance - example

• For study 1: 6, 7, 8, 4, 5, and 6, the variance is:

$$s^{2} = \frac{(6-6)^{2} + (7-6)^{2} + (8-6)^{2} + (5-6)^{2} + (6-6)^{2}}{6-1} = \frac{10}{5} = 2$$

• For study 2: 10, 2, 3, 9, the variance is:

$$s^{2} = \frac{(10-6)^{2} + (2-6)^{2} + (3-6)^{2} + (9-6)^{2}}{4-1} = \frac{50}{3} = 16.7$$

 The scores in study 2 were much more variable than those in study 1.

Standard deviation

 The problem with variance is that it is expressed in unit squared, whereas the mean is in the actual unit. We need a way to convert variance back to the actual unit of measurement.

 We take the square root of variance – this is called "standard deviation" (denote by s)

For study 1, s = sqrt(2) = 1.41
 For study 2, s = sqrt(16.7) = 4.1

Coefficient of variation

- In many studies, the standard deviation can vary with the mean (eg higher/lower mean values are associated with higher/lower SD)
- Another statistic commonly used to quantify this phenomenon is the *coefficient of variation* (CV).
- A CV expresses the SD as percentage of the mean. CV = SD/mean*100
- For study 1, CV = 1.41 / 6 * 100 = 23.5%

For study 2, CV = 4.1 / 6 * 100 = 68.3%

Summary statistics

- Summary statistics are usually shown in sample size, mean and standard deviation.
- In our examples

Study	Ν	Mean	SD		
1	6	6.0	1.4		
2	4	6.0	4.1		

Implications of the mean and SD

- "In the Vietnamese population aged 30+ years, the average of weight was 55.0 kg, with the SD being 8.2 kg."
- What does this mean?

• If the data are *normally* distributed, this means that the probability that *an individual randomly selected from the population with weight being w kg is*:

$$P(Weight = w) = \frac{1}{s\sqrt{2\pi}} \exp\left[\frac{-(w - \bar{x})^2}{2s^2}\right]$$

Implications of the mean and SD

- In our example, x = 55, s = 8.2
- The probability that an individual randomly selected from the population with weight being 40 kg is:

$$P(Weight = 40) = \frac{1}{8.2 \times \sqrt{2 \times 3.1416}} \exp\left[\frac{-(40 - 55)^2}{2 \times 8.2 \times 8.2}\right] = 0.009$$
$$P(Weight = 50) = \frac{1}{8.2 \times \sqrt{2 \times 3.1416}} \exp\left[\frac{-(50 - 55)^2}{2 \times 8.2 \times 8.2}\right] = 0.040$$

$$P(Weight = 80) = \frac{1}{8.2 \times \sqrt{2 \times 3.1416}} \exp\left[\frac{-(80 - 55)^2}{2 \times 8.2 \times 8.2}\right] = 0.0004$$

Implications of the mean and SD

 The distribution of weight of the entire population can be shown to be:

- Actual measurements can be converted to z-scores
- A z-score is the *number of SDs from the mean*

$$Z = \frac{x - \overline{x}}{s}$$

- A weight = 55 kg \rightarrow z = (55 55)/8.2 = 0 SDs
- A weight = 40 kg \rightarrow z = (40 55)/8.2 = -1.8 SDs
- A weight = 80 kg \rightarrow z = (80-55)/8.2 = 3.0 SDs

Z-scores = Standard Normal Distribution

- A z-score is unitless, allowing comparison between variables with different measurements
- Z-scores have mean 0 and variance of 1.
- Z-scores → Standard Normal Distribution

Z-scores and area under the curve

• Z-scores and weight – another look:

- Area under the curve for $z \le -1.96 = 0.025$
- Area under the curve for $-1.0 \le z \le 1.0 = 0.6828$
- Area under the curve for $-2.0 \le z \le 2.0 = 0.9544$
- Area under the curve for $-3.0 \le z \le 3.0 = 0.9972$

95% confidence interval

- A sample of *n* measurements (x₁, x₂, ..., x_n), with mean x and standard deviation s.
- 95% of the individual values of x_i lies between x-1.96s and x+1.96s

- Mean weight = 55 kg, SD = 8.2 kg
- 95% of individuals' weight lies between 39 kg and 71 kg.

Cumulative probability (area under the curve) for Z-scores

Z <u><</u>	-3	-2.5	-2.0	-1.5	-1.0	-0.5	0	0.5	1.0	1.5	2.0	2.5	3.0
Prob	.0013	.006	.0227	.0668	.1587	.3085	.5000	.6915	.8413	.9332	.9772	.9938	.9987

Standard error (SE)

$$SE = \frac{S}{\sqrt{n}}$$

- SE = standard error
- s: standard deviation
- *n*: sample size

What does it mean ?

The meaning of SE

- Consider a <u>population</u> of 10 people: 130, 189, 200, 156, 154, 160, 162, 170, 145, 140
- Mean μ = 160.6 cm
- We *repeated* take random samples, each sample has 5 people:

The meaning of SE

• We *repeated* take random samples, each sample has 5 people:

1 st sample: 140, 160, 200, 140, 145	mean $x1 = 157.0$
2 nd sample: 154, 170, 162, 160, 162	mean <u>x</u> 2 = 161.6
3rd sample: 145, 140, 156, 140, 156	mean x3 = 147.4
4 th sample: 140, 170, 162, 170, 145	mean x4 = 157.4
5 th sample: 156, 156, 170, 189, 170	mean x5 = 168.2
6 th sample: 130, 170, 170, 170, 170	mean x6 = 162.0
7 th sample: 156, 154, 145, 154, 189	mean <i>x</i> 7 = 159.6
8 th sample: 200, 154, 140, 170, 170	mean <u>x8 = 166.8</u>
9 th sample: 140, 170, 145, 162, 160	mean <i>x</i> 9 = 155.4
10 th sample: 200, 200, 162, 170, 162	mean x10 = 178.8

. . . .

SD of x1, x2, x3, ..., x10 is the SE

Use of SD and SE

- Let the *population mean* be μ (we do not know μ). Let the *sample mean* be *x* and SD be *s*.
- 68% *individuals* in the population will have values from x—s to x+s
- 95% *individuals* in the population will have values from x–2s to x+2s
- 99% *individuals* in the population will have values from x–3s to x+3s

Let the *population mean* be μ (we do not know μ). Let the *sample mean* be *x* and SE be *se*.

- 68% averages from repeated samples will have values from x—se to x+se
- 95% *averages* from repeated samples will have values from x–2se to x+2se
- 99% averages from repeated samples will have values from x-3se to x+3se

Central location: Median

- The median is the value with a *depth* of (n+1)/2
- When n is even, average the two values that straddle a depth of (n+1)/2
- For the 10 values listed below, the median has depth (10+1) / 2 = 5.5, placing it between 27 and 28. Average these two values to get median = 27.5

More examples of medians

• Example A: 2 4 6

Median = 4

• Example B: 2 4 6 8

Median = 5 (average of 4 and 6)

• Example C: 6 2 4

Median $\neq 2$

(Values must be *ordered* first)

The median is *robust*

The median is more resistant to skews and outliers than the mean; it is more *robust*.

This data set has a mean of 1636:

1362 1439 1460 1614 1666 1792 1867

Here's the same data set with a data entry error "outlier" (*highlighted*). This data set has a mean of 2743:

1362 1439 1460 1614 1666 1792 **9867**

The median is 1614 in both instances, demonstrating its robustness in the face of outliers.

Mode

- The mode is the most commonly encountered value in the dataset
- This data set has a mode of 7
 {4, 7, 7, 7, 8, 8, 9}
- This data set has no mode
 {4, 6, 7, 8}
 (each point appears only once)
- The mode is useful only in large data sets with repeating values

Comparison of Mean, Median, Mode

Spread: Quartiles

- Quartile 1 (Q1): cuts off bottom 25% of data
- Quartile 3 (Q3): cuts off top 25% of data
 median of the to half of the data set
- Interquartile Range (IQR) = Q3 Q1

Box plot

Data: 05 11 21 24 27 28 30 42 50 52

5 pt summary: {5, 21, 27.5, 42, 52};
 box from 21 to 42 with line @ 27.5

•
$$IQR = 42 - 21 = 21$$
.
 $FU = Q3 + 1.5(IQR) = 42 + (1.5)(21) =$
73.5
 $FL = Q1 - 1.5(IQR) = 21 - (1.5)(21) = -$
10.5

- None values above upper fence
 None values below lower fence
- Upper inside value = 52
 Lower inside value = 5
 Draws whiskers

Box plot

Seven metabolic rates:

1362 1439 1460 1614 1666 1792 1867

 5-point summary: 1362, 1449.5, 1614, 1729, 1867

 $F_{U} = Q3 + 1.5(IQR) = 1729 + (1.5)(279.5) = {}_{18}$ 2148.25

$$F_{L} = Q1 - 1.5(IQR) = 1449.5 - (1.5)(279.5)$$

= 1030.25

- 3. None outside
- 4. Whiskers end @ 1867 and 1362

Report of statistical summary

- Always report a measure of central location, a measure of spread, and the sample size
- Symmetrical mound-shaped distributions ⇒ report mean and standard deviation
- Non-normally distributed data: median, interquartile ranges

Summary

- *Mean* indicates the typical value of sample values.
- Standard deviation indicates the between-subjects variability of sample values;
- Standard deviation indicates the variability among sample means = standard deviation of the means.
- (There is no such thing called "standard error of the means" (SEM))
- Coefficient of variation indicates the relative variability (about the mean) among subjects within a sample.
- 95% confidence interval loosely means the probable values of a sample with 95% probability.