Descriptive analysis of continuous variables

Tuan V. Nguyen

Professor and NHMRC Senior Research Fellow
Garvan Institute of Medical Research
University of New South Wales
Sydney, Australia

Some old words

"If it were not for the great variability among individuals, medicine might be a Science, not an Art"

William Osler, 1882
The Principles and Practice of Medicine

Normal (Gaussian) distribution

- Given a series of values xi $(i=1, \ldots, n): x 1, x 2, \ldots, x n$, the mean is:

$$
\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

- Study 1: the color scores of 6 consumers are: $6,7,8,4,5$, and 6. The mean is:

$$
\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}=\frac{6+7+8+4+5+6}{6}=\frac{36}{6}=6
$$

- Study 2: the color scores of 4 consumers are: $10,2,3$, and 9 . The mean is:

$$
\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}=\frac{10+2+3+9}{4}=\frac{24}{4}=6
$$

Variation

- The mean does not adequately describe the data. We need to know the variation in the data.
- An obvious measure is the sum of difference from the mean.
- For study 1 , the scores $6,7,8,4,5$, and 6 , we have:

$$
\begin{aligned}
& (6-6)+(7-6)+(8-6)+(4-6)+(5-6)+(6-6) \\
& =0+1+2-2-1+0 \\
& =0
\end{aligned}
$$

NOT SATISFACTORY!

Sum of squares

- We need to make the difference positive by squaring them. This is called "Sum of squares" (SS)
- For study $1: 6,7,8,4,5,6$, we have:

$$
\begin{aligned}
\mathrm{SS} & =(6-6)^{2}+(7-6)^{2}+(8-6)^{2}+(4-6)^{2}+(5-6)^{2}+(6-6)^{2} \\
& =10
\end{aligned}
$$

- For study 2: 10, 2, 3, 9, we have:

$$
S S=(10-6)^{2}+(2-6)^{2}+(3-6)^{2}+(9-6)^{2}=50
$$

- This is better!
- But it does not take into account sample size n.

Variance

- We have to divide the SS by sample size n. But in each square we use the mean to calculate the square, so we lose 1 degree of freedom.
- Therefore the correct denominator is $n-1$. This is called variance (denoted by s^{2})

$$
s^{2}=\frac{\left(x_{1}-\bar{x}\right)^{2}+\left(x_{2}-\bar{x}\right)^{2}+\ldots+\left(x_{n}-\bar{x}\right)^{2}}{n-1}
$$

- Or, in the sum notation:

$$
s^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}
$$

Variance - example

- For study $1: 6,7,8,4,5$, and 6 , the variance is:

$$
s^{2}=\frac{(6-6)^{2}+(7-6)^{2}+(8-6)^{2}+(5-6)^{2}+(6-6)^{2}}{6-1}=\frac{10}{5}=2
$$

- For study 2: 10, 2, 3, 9 , the variance is:

$$
s^{2}=\frac{(10-6)^{2}+(2-6)^{2}+(3-6)^{2}+(9-6)^{2}}{4-1}=\frac{50}{3}=16.7
$$

- The scores in study 2 were much more variable than those in study 1.

Standard deviation

- The problem with variance is that it is expressed in unit squared, whereas the mean is in the actual unit. We need a way to convert variance back to the actual unit of measurement.
- We take the square root of variance - this is called "standard deviation" (denote by s)
- For study $1, \mathrm{~s}=\operatorname{sqrt}(2)=1.41$

For study $2, \mathrm{~s}=\operatorname{sqrt}(16.7)=4.1$

Coefficient of variation

- In many studies, the standard deviation can vary with the mean (eg higher/lower mean values are associated with higher/lower SD)
- Another statistic commonly used to quantify this phenomenon is the coefficient of variation (CV).
- A CV expresses the $S D$ as percentage of the mean. CV = SD/mean*100
- For study 1, CV = 1.41 / 6 * $100=23.5 \%$

For study 2, CV $=4.1 / 6$ * $100=68.3 \%$

Summary statistics

- Summary statistics are usually shown in sample size, mean and standard deviation.
- In our examples

Study	N	Mean	SD
1	6	6.0	1.4
2	4	6.0	4.1

Implications of the mean and SD

- "In the Vietnamese population aged 30+ years, the average of weight was 55.0 kg , with the SD being 8.2 kg ."
- What does this mean?
- If the data are normally distributed, this means that the probability that an individual randomly selected from the population with weight being $w \mathrm{~kg}$ is:

$$
P(\text { Weight }=w)=\frac{1}{s \sqrt{2 \pi}} \exp \left[\frac{-(w-\bar{x})^{2}}{2 s^{2}}\right]
$$

Implications of the mean and SD

- In our example, $x=55, s=8.2$
- The probability that an individual randomly selected from the population with weight being 40 kg is:

$$
\begin{aligned}
& P(\text { Weight }=40)=\frac{1}{8.2 \times \sqrt{2 \times 3.1416}} \exp \left[\frac{-(40-55)^{2}}{2 \times 8.2 \times 8.2}\right]=0.009 \\
& P(\text { Weight }=50)=\frac{1}{8.2 \times \sqrt{2 \times 3.1416}} \exp \left[\frac{-(50-55)^{2}}{2 \times 8.2 \times 8.2}\right]=0.040 \\
& P(\text { Weight }=80)=\frac{1}{8.2 \times \sqrt{2 \times 3.1416}} \exp \left[\frac{-(80-55)^{2}}{2 \times 8.2 \times 8.2}\right]=0.0004
\end{aligned}
$$

Implications of the mean and SD

- The distribution of weight of the entire population can be shown to be:

Workshop on Analysis of Clinical Studies - Can Tho University of Medicine and Pharmacy - April 2012

Z-scores

- Actual measurements can be converted to z-scores
- A z-score is the number of SDs from the mean

$$
Z=\frac{x-\bar{x}}{s}
$$

- A weight $=55 \mathrm{~kg} \rightarrow \mathrm{z}=(55-55) / 8.2=0$ SDs
- A weight $=40 \mathrm{~kg} \rightarrow \mathrm{z}=(40-55) / 8.2=-1.8$ SDs
- A weight $=80 \mathrm{~kg} \rightarrow \mathrm{z}=(80-55) / 8.2=3.0$ SDs

Z-scores = Standard Normal Distribution

- A z-score is unitless, allowing comparison between variables with different measurements
- Z-scores have mean 0 and variance of 1 .
- Z-scores \rightarrow Standard Normal Distribution

Z-scores and area under the curve

- Z-scores and weight - another look:

- Area under the curve for $z \leq-1.96=0.025$
- Area under the curve for $-1.0 \leq z \leq 1.0=0.6828$
- Area under the curve for $-2.0 \leq z \leq 2.0=0.9544$
- Area under the curve for $-3.0 \leq z \leq 3.0=0.9972$

95\% confidence interval

- A sample of n measurements $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, with mean x and standard deviation s.
- 95% of the individual values of x_{i} lies between $x-1.96 s$ and $x+1.96 s$
- Mean weight $=55 \mathrm{~kg}, \mathrm{SD}=8.2 \mathrm{~kg}$
- 95% of individuals' weight lies between 39 kg and 71 kg .

Cumulative probability (area under the curve) for Z-scores

$\mathrm{Z} \leq$	-3	-2.5	-2.0	-1.5	-1.0	-0.5	0	0.5	1.0	1.5	2.0	2.5	3.0
Prob	.0013	.006	.0227	.0668	.1587	.3085	.5000	.6915	.8413	.9332	.9772	.9938	.9987

Workshop on Analysis of Clinical Studies - Can Tho University of Medicine and Pharmacy - April 2012

Standard error (SE)

$$
S E=\frac{s}{\sqrt{n}}
$$

- $\mathrm{SE}=$ standard error
- s : standard deviation
- n : sample size

What does it mean?

The meaning of SE

- Consider a population of 10 people: 130, 189, 200, 156, 154, 160, 162, 170, 145, 140
- Mean $\mu=160.6$ cm
- We repeated take random samples, each sample has 5 people:

The meaning of SE

- We repeated take random samples, each sample has 5 people:

```
1 st sample: 140, 160, 200, 140, 145
2 nd sample: 154, 170, 162, 160, 162
3rd sample: 145, 140, 156, 140, 156
4th}\mathrm{ sample: 140, 170, 162, 170, 145
5 th sample: 156, 156, 170, 189, 170
6 th sample: 130, 170, 170, 170, 170
7th}\mathrm{ sample: 156, 154, 145, 154, }18
8th}\mathrm{ sample: 200, 154, 140, 170, 170
9th}\mathrm{ sample: 140, 170, 145, 162, 160
10th sample: 200, 200, 162, 170, 162
```

```
mean x9 = 155.4
```

mean x9 = 155.4

```
mean x1 = 157.0
```

mean x1 = 157.0
mean x2 = 161.6
mean x2 = 161.6
mean x3 = 147.4
mean x3 = 147.4
mean x4=157.4
mean x4=157.4
mean x5 = 168.2
mean x5 = 168.2
mean x6 = 162.0
mean x6 = 162.0
mean x7 = 159.6
mean x7 = 159.6
mean x8 = 166.8
mean x8 = 166.8
mean x10=178.8

```
mean x10=178.8
```

SD of $x 1, x 2, x 3, \ldots, x 10$ is the SE

Use of SD and SE

Let the population mean be μ (we do not know μ). Let the sample mean be x and SD be s.

- 68% individuals in the population will have values from $x-s$ to $x+s$
- 95% individuals in the population will have values from $x-2 s$ to $x+2 s$
- 99% individuals in the population will have values from $x-3 s$ to $x+3 s$

Let the population mean be μ (we do not know μ). Let the sample mean be x and SE be se.

- 68% averages from repeated samples will have values from $x-s e$ to $x+s e$
- 95% averages from repeated samples will have values from $x-2 s e$ to $x+2 s e$
- 99% averages from repeated samples will have values from $x-3 s e$ to $x+3 s e$

Central location: Median

- The median is the value with a depth of $(\mathrm{n}+1) / 2$
- When n is even, average the two values that straddle a depth of $(n+1) / 2$
- For the 10 values listed below, the median has depth $(10+1) / 2=5.5$, placing it between 27 and 28 . Average these two values to get median $=27.5$

05	11	21	24	27	28	30	42	50	52
	Average the adjacent values: $M=27.5$								

More examples of medians

- Example A: 246

Median = 4

- Example B: 2468

Median $=5$ (average of 4 and 6)

- Example C: 624

Median $\neq 2$
(Values must be ordered first)

The median is robust

The median is more resistant to skews and outliers than the mean; it is more robust.

This data set has a mean of 1636:
$\begin{array}{lllllll}1362 & 1439 & 1460 & 1614 & 1666 & 1792 & 1867\end{array}$
Here's the same data set with a data entry error "outlier" (highlighted). This data set has a mean of 2743:
$\begin{array}{lllllll}1362 & 1439 & 1460 & 1614 & 1666 & 1792 & 9867\end{array}$
The median is 1614 in both instances, demonstrating its robustness in the face of outliers.

Mode

- The mode is the most commonly encountered value in the dataset
- This data set has a mode of 7 $\{4,7,7,7,8,8,9\}$
- This data set has no mode \{4, 6, 7, 8\}
(each point appears only once)
- The mode is useful only in large data sets with repeating values

Comparison of Mean, Median, Mode

Spread: Quartiles

- Quartile 1 (Q1): cuts off bottom 25\% of data
- Quartile 3 (Q3): cuts off top 25\% of data = median of the to half of the data set
- Interquartile Range (IQR) = Q3 - Q1

$$
\begin{array}{cccccccc}
\hline 05 & 11 & 21 & 24 & 27 & 28 & 30 & 42 \\
& & & & 50 & 52 \\
& & & \uparrow & & \uparrow & \\
& & \text { Q1 } & & \text { median } & & Q 3
\end{array}
$$

Box plot

Data: $05 \begin{array}{lllllllll}11 & 21 & 24 & 27 & 28 & 30 & 42 & 50 & 52\end{array}$

- 5 pt summary: $\{5,21,27.5,42,52\}$; box from 21 to 42 with line @ 27.5
- $\quad I Q R=42-21=21$.
$\mathrm{FU}=\mathrm{Q} 3+1.5(\mathrm{IQR})=42+(1.5)(21)=$ 73.5
$\mathrm{FL}=\mathrm{Q} 1-1.5(\mathrm{IQR})=21-(1.5)(21)=-$ 10.5
- None values above upper fence None values below lower fence

- Upper inside value $=52$ Lower inside value $=5$ Draws whiskers

Box plot

Seven metabolic rates:

$\begin{array}{lllllll}1362 & 1439 & 1460 & 1614 & 1666 & 1792 & 1867\end{array}$

1. 5-point summary: 1362, 1449.5, 1614, 1729, 1867
2. $\quad \operatorname{IQR}=1729-1449.5=279.5$
$\begin{aligned} F_{U}= & Q 3+1.5(\mathrm{IQR})=1729+(1.5)(279.5)= \\ & 2148.25\end{aligned}$

Data source: Moore,

Report of statistical summary

- Always report a measure of central location, a measure of spread, and the sample size
- Symmetrical mound-shaped distributions \Rightarrow report mean and standard deviation
- Non-normally distributed data: median, interquartile ranges

Summary

- Mean indicates the typical value of sample values.
- Standard deviation indicates the between-subjects variability of sample values;
- Standard deviation indicates the variability among sample means = standard deviation of the means.
- (There is no such thing called "standard error of the means" (SEM))
- Coefficient of variation indicates the relative variability (about the mean) among subjects within a sample.
- 95% confidence interval loosely means the probable values of a sample with 95% probability.

