Correlation analysis

Tuan V. Nguyen
 Professor and NHMRC Senior Research Fellow Garvan Institute of Medical Research University of New South Wales Sydney, Australia

What we are going to learn ...

- Examples (BMD and age, BMD and weight)
- Formulating question
- Covariance and correlation
- R analysis
- Interpretation
- Linear regression

Femoral neck bone density and age

Weight and femoral neck bone density

plot(fnbmd ~ weight, pch=16) abline(lm(fnbmd ~ weight))

When to consider correlation?

When the independent variable is categorical

When to consider correlation?

- Relationship between 2 continuous variables
- Degree of co-variation
- Predition?

Meet Sir Francis Galton (16/2/1822-17/1/1911)

Research interest:
"Those qualifications of intellect and disposition which ... lead to reputation"

Galton's conclusions:

- Nature dominates: "families of reputation were much more likely than ordinary families to produce offspring of ability"
- Recommended "judicious marriages during several generations" to "produce a highly gifted race of men"
- His "genetic utopia": "Bright, healthy individuals were treated and paid well, and encouraged to have plenty of children. Social undesirables were treated with reasonable kindness so long as they worked hard and stayed celibate."

Didn' t have data on "intelligence" so instead studied HEIGHT

- Although a self-proclaimed genius, who wrote that he could read @ 2^{112}, write/do arithmetic @4, and was comfortable with Latin texts @8, he couldn't figure out how to model these data(!)
- He went to JD Dickson, a mathematician at Cambridge, who formalized the relationship by developing what we now know as linear regression

How do we describe the linear relationship?

- Let X and Y be two random variables from a sample of nobervations.
- Measure of variability of x and y : variance

$$
\operatorname{var}(x)=\sum_{i=1}^{n} \frac{\left(x_{i}-\bar{x}\right)^{2}}{n-1} \quad \operatorname{var}(y)=\sum_{i=1}^{n} \frac{\left(y_{i}-\bar{y}\right)^{2}}{n-1}
$$

- We need a measure of covariation (covariance) between X and Y.
- Covariance is the average of product of X and Y

$$
\operatorname{cov}(x, y)=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)
$$

Variance and covariance: geometry

- The independence or dependence between x and y can be represented geometrically:

$h^{2}=x^{2}+y^{2}$

$h^{2}=x^{2}+y^{2}-2 x y \cos (H)$

Covariance

Meaning of variance and covariance

- Variance is always positive
- If covariance $=0, X$ and Y are independent
- Covariance is sum of cross-products: can be positive or negative
- Negative covariance = deviations in the two distributions in are opposite directions
- Positive covariance = deviations in the two distributions in are in the same direction
- Covariance $=$ a measure of strength of association

Some correlations

$$
r=0.99
$$

$$
r=0.90
$$

$$
r=0.50
$$

$$
r=0.25
$$

$$
r=0.10
$$

$$
r=0.01
$$

Our aim of analysis

- To estimate the coefficient of correlation (r)
- To test whether $r=0$?

Estimate of correlation coefficient r

- Covariance is unit-depenent.
- Coefficient of correlation (r) between X and Y is a standardized covariance
- r is defined by:

$$
r=\frac{\operatorname{cov}(x, y)}{\sqrt{\operatorname{var}(x) \times \operatorname{var}(y)}}=\frac{\operatorname{cov}(x, y)}{S D_{x} \times S D_{y}}
$$

Test of hypothesis of correlation

- Hypothesis: $\mathrm{H}_{\mathrm{o}}: r=0$ versus $\mathrm{H}_{0}: r$ not equal to 0 .
- Fisher's z-transformation: transform $r \rightarrow z$

$$
z=\frac{1}{2} \ln \left(\frac{1+r}{1-r}\right)
$$

- Calculate standard error of \mathbf{z}
- T-test:

$$
S E(z)=\frac{1}{\sqrt{n-3}}
$$

$$
t=\frac{z}{S E(z)}
$$

Example: bone density, age, and weight

- Cross-sectional study
- Bone mineral density (BMD) was measured at the femoral neck
- Age, weight
- Questions
- Was there a correlation between age and BMD, weight and BMD?
- Was the correlation statistically significant?

Femoral neck bone density and age

R analysis

> cor.test(fnbmd, age)

Pearson's product-moment correlation
data: fnbmd and age
$\mathrm{t}=-14.4162$, $\mathrm{df}=556$, p -value $<2.2 \mathrm{e}-16$
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
-0.5795310 -0.4584638
sample estimates:
cor
-0.5216183

Age and BMD: an interpretation

- The coefficient of correlation between age and BMD was -0.52
- Older individuals had lower BMD than younger individuals
- The correlation was statistically significant ($\mathrm{P}<$ 0.0001)

Weight and femoral neck bone density

plot(fnbmd ~ weight, pch=16) abline(lm(fnbmd ~ weight))

R analysis

> cor.test(fnbmd, weight)

Pearson's product-moment correlation
data: fnbmd and weight
$\mathrm{t}=8.1795$, $\mathrm{df}=556, \mathrm{p}$-value $=1.998 \mathrm{e}-15$
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
0.25157050 .3998585
sample estimates:
cor
0.3277315

Weight and BMD: an interpretation

- The coefficient of correlation between weight and BMD was 0.33
- The correlation was statistically significant ($\mathrm{P}<$ 0.0001)

r and R^{2}

- r is the correlation coefficient
- R^{2} is the coefficient of determination:

The amount of variation of one variable can be "explained" by another variable

- $r($ weight, $B M D)=0.33$ means that $R^{2}=(0.33)^{2}=0.11$.

This means that weight could explain 11\% of the variation in BMD

Multi-variable correlations

- Inter-correlations among variables can be computed
- Bivariate correlation

library (psych)

temp = cbind(age, weight, height, bmi, lsbmd, fnbmd, xlap) pairs.panels (temp)


```
> corr.test(temp)
```

Call:corr.test(x = temp)
Correlation matrix
age weight height bmi lsbmd fnbmd xlap

age	1.00	0.08	-0.22	0.27	-0.36	-0.52	-0.17
weight	0.08	1.00	0.58	0.76	0.33	0.33	-0.01
height	-0.22	0.58	1.00	-0.08	0.34	0.41	0.17
bmi	0.27	0.76	-0.08	1.00	0.14	0.07	-0.16
lsbmd	-0.36	0.33	0.34	0.14	1.00	0.70	-0.15
fnbmd	-0.52	0.33	0.41	0.07	0.70	1.00	-0.06
xlap	-0.17	-0.01	0.17	-0.16	-0.15	-0.06	1.00

Probability value

age weight height bmi lsbmd fnbmd xlap
age $\quad 0.00 \quad 0.07 \quad 0.000 .00 \quad 0.00 \quad 0.00 \quad 0.01$
weight $0.07 \quad 0.00 \quad 0.00 \quad 0.00 \quad 0.00 \quad 0.00 \quad 0.88$
height $0.00 \quad 0.00 \quad 0.00 \quad 0.07 \quad 0.00 \quad 0.00 \quad 0.01$

bmi	0.00	0.00	0.07	0.00	0.00	0.10	0.01

lsbmd	0.00	0.00	0.00	0.00	0.00	0.00	0.02
fnbmd	0.00	0.00	0.00	0.10	0.00	0.00	0.38
xlap	0.01	0.88	0.01	0.01	0.02	0.38	0.00

Be careful !

- Study on 44 university students
- Measure body mass index (BMI)
- Sexual attractiveness (SA) score

$$
\begin{aligned}
& \text { id <- seq(1:44) } \\
& \text { bmi <- c(11.00, 12.00, 12.50, 14.00, 14.00, 14.00, 14.00, } \\
& 14.00,14.00,14.80,15.00,15.00,15.50,16.00 \text {, } \\
& 16.50,17.00,17.00,18.00,18.00,19.00,19.00 \text {, } \\
& 20.00,20.00,20.00,20.50,22.00,23.00,23.00 \text {, } \\
& 24.00,24.50,25.00,25.00,26.00,26.00,26.50 \text {, } \\
& 28.00,29.00,31.00,32.00,33.00,34.00,35.50 \text {, } \\
& 36.00 \text {, 36.00) } \\
& \text { sa <- c (2.0, 2.8, 1.8, 1.8, 2.0, 2.8, 3.2, 3.1, 4.0, 1.5, } \\
& 3.2,3.7,5.5,5.2,5.1,5.7,5.6,4.8,5.4,6.3 \text {, } \\
& 6.5,4.9,5.0,5.3,5.0,4.2,4.1,4.7,3.5,3.7, \\
& 3.5,4.0,3.7,3.6,3.4,3.3,2.9,2.1,2.0,2.1, \\
& 2.1,2.0,1.8,1.7)
\end{aligned}
$$

Negative correlation

> cor.test(bmi, sa)

Pearson's product-moment correlation
data: bmi and sa
$\mathrm{t}=-2.0845$, $\mathrm{df}=42$, p -value $=0.04323$
alternative hypothesis: true correlation is not equal to 0 95 percent confidence interval:
-0.55282250-0.01024671
sample estimates:
cor
-0. 3061956

But

- plot(sa, bmi)

Scatter plots of data with various correlation coefficients

Workshop on Analysis of Clinical Studies - Can Tho University of Medicine and Pharmacy - April 2012

Linear correlation

Curvilinear relationships

Linear correlation

Summary

- A measure of strength of association between 2 continuous variables
- Normally distributed data
- Only applicable to a LINEAR relationship
- Correlation is not necessarily a measure of cause-and-effect relationship

