Correlation analysis

Tuan V. Nguyen Professor and NHMRC Senior Research Fellow Garvan Institute of Medical Research University of New South Wales Sydney, Australia

What we are going to learn ...

- Examples (BMD and age, BMD and weight)
- Formulating question
- Covariance and correlation
- R analysis
- Interpretation
- Linear regression

Femoral neck bone density and age

age

Weight and femoral neck bone density

plot(fnbmd ~ weight, pch=16)
abline(lm(fnbmd ~ weight))

When to consider correlation?

When the independent variable is *categorical*

When to consider correlation?

- *Relationship* between 2 continuous variables
- Degree of co-variation
- Predition ?

Meet Sir Francis Galton (16/2/1822 – 17/1/1911)

Research interest:

"Those qualifications of intellect and disposition which ... lead to reputation"

Galton's conclusions:

- Nature dominates: "families of reputation were much more likely than ordinary families to produce offspring of ability"
- Recommended "judicious marriages during several generations" to "produce a highly gifted race of men"
- His "genetic utopia": "Bright, healthy individuals were treated and paid well, and encouraged to have plenty of children. Social undesirables were treated with reasonable kindness so long as they worked hard and stayed celibate."

Didn't have data on "intelligence" so instead studied HEIGHT

- Although a self-proclaimed genius, who wrote that he could read @2½, write/do arithmetic @4, and was comfortable with Latin texts @8, he couldn't figure out how to model these data(!)
- He went to JD Dickson, a mathematician at Cambridge, who formalized the relationship by developing what we now know as linear regression

How do we describe the linear relationship?

- Let X and Y be two random variables from a sample of *n* obervations.
- Measure of variability of x and y: variance

$$\operatorname{var}(x) = \sum_{i=1}^{n} \frac{(x_i - \overline{x})^2}{n - 1} \qquad \operatorname{var}(y) = \sum_{i=1}^{n} \frac{(y_i - \overline{y})^2}{n - 1}$$

- We need a measure of **covariation (covariance)** between X and Y.
- Covariance is the average of **product** of X and Y

$$\operatorname{cov}(x, y) = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x}) (y_i - \overline{y})$$

Variance and covariance: geometry

• The independence or dependence between *x* and *y* can be represented geometrically:

Covariance

Meaning of variance and covariance

- Variance is always positive
- If covariance = 0, X and Y are independent
- Covariance is sum of cross-products: can be positive or negative

- Negative covariance = deviations in the two distributions in are opposite directions
- Positive covariance = deviations in the two distributions in are in the same direction
- Covariance = a measure of strength of association

Some correlations

r = 0.25

r = 0.10

r = 0.01

Our aim of analysis

- To estimate the *coefficient of correlation (r)*
- To test whether *r* = 0 ?

Estimate of correlation coefficient r

- Covariance is unit-depenent.
- Coefficient of correlation (r) between X and Y is a standardized covariance
- *r* is defined by:

$$r = \frac{\operatorname{cov}(x, y)}{\sqrt{\operatorname{var}(x) \times \operatorname{var}(y)}} = \frac{\operatorname{cov}(x, y)}{SD_x \times SD_y}$$

Test of hypothesis of correlation

- Hypothesis: H_o : r = 0 versus H_o : r not equal to 0.
- Fisher's z-transformation: transform $r \rightarrow z$

$$z = \frac{1}{2} \ln \left(\frac{1+r}{1-r} \right)$$

Calculate standard error of z

$$SE(z) = \frac{1}{\sqrt{n-3}}$$

• T-test:

$$t = \frac{z}{SE(z)}$$

Example: bone density, age, and weight

- Cross-sectional study
- Bone mineral density (BMD) was measured at the femoral neck
- Age, weight
- Questions
 - Was there a correlation between age and BMD, weight and BMD?
 - Was the correlation statistically significant?

Femoral neck bone density and age

age

R analysis

> cor.test(fnbmd, age)

Pearson's product-moment correlation

data: fnbmd and age

t = -14.4162, df = 556, p-value < 2.2e-16

alternative hypothesis: true correlation is not equal to 0

95 percent confidence interval:

-0.5795310 -0.4584638

sample estimates:

cor

-0.5216183

Age and BMD: an interpretation

- The coefficient of correlation between age and BMD was -0.52
- Older individuals had *lower* BMD than younger individuals
- The correlation was statistically significant (P < 0.0001)

Weight and femoral neck bone density

plot(fnbmd ~ weight, pch=16)
abline(lm(fnbmd ~ weight))

R analysis

> cor.test(fnbmd, weight)

Pearson's product-moment correlation

data: fnbmd and weight

t = 8.1795, df = 556, p-value = 1.998e-15

alternative hypothesis: true correlation is not equal to 0

95 percent confidence interval:

 $0.2515705 \ 0.3998585$

sample estimates:

cor

0.3277315

Weight and BMD: an interpretation

- The coefficient of correlation between weight and BMD was 0.33
- The correlation was statistically significant (P < 0.0001)

r and R²

- r is the correlation coefficient
- R² is the coefficient of determination:

The amount of variation of one variable can be "explained" by another variable

r(weight, BMD) = 0.33 means that R² = (0.33)² = 0.11.
 This means that weight could explain 11% of the variation in BMD

Multi-variable correlations

- Inter-correlations among variables can be computed
- Bivariate correlation

```
library(psych)
temp = cbind(age, weight, height, bmi, lsbmd, fnbmd, xlap)
pairs.panels(temp)
```


> corr.test(temp)

Call:corr.test(x = temp) Correlation matrix

	age	weight	height	bmi	lsbmd	fnbmd	xlap
age	1.00	0.08	-0.22	0.27	-0.36	-0.52	-0.17
weight	0.08	1.00	0.58	0.76	0.33	0.33	-0.01
height	-0.22	0.58	1.00	-0.08	0.34	0.41	0.17
bmi	0.27	0.76	-0.08	1.00	0.14	0.07	-0.16
lsbmd	-0.36	0.33	0.34	0.14	1.00	0.70	-0.15
fnbmd	-0.52	0.33	0.41	0.07	0.70	1.00	-0.06
xlap	-0.17	-0.01	0.17	-0.16	-0.15	-0.06	1.00

Probability value

	age	weight	height	bmi	lsbmd	fnbmd	xlap
age	0.00	0.07	0.00	0.00	0.00	0.00	0.01
weight	0.07	0.00	0.00	0.00	0.00	0.00	0.88
height	0.00	0.00	0.00	0.07	0.00	0.00	0.01
bmi	0.00	0.00	0.07	0.00	0.00	0.10	0.01
lsbmd	0.00	0.00	0.00	0.00	0.00	0.00	0.02
fnbmd	0.00	0.00	0.00	0.10	0.00	0.00	0.38
xlap	0.01	0.88	0.01	0.01	0.02	0.38	0.00

Be careful !

- Study on 44 university students
- Measure body mass index (BMI)
- Sexual attractiveness (SA) score

```
id < -seq(1:44)
bmi < -c(11.00, 12.00, 12.50, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00, 14.00
                                         14.00, 14.00, 14.80, 15.00, 15.00, 15.50, 16.00,
                                         16.50, 17.00, 17.00, 18.00, 18.00, 19.00, 19.00,
                                         20.00, 20.00, 20.00, 20.50, 22.00, 23.00, 23.00,
                                         24.00, 24.50, 25.00, 25.00, 26.00, 26.00, 26.50,
                                         28.00, 29.00, 31.00, 32.00, 33.00, 34.00, 35.50,
                                         36.00, 36.00)
sa <- c(2.0, 2.8, 1.8, 1.8, 2.0, 2.8, 3.2, 3.1, 4.0, 1.5,
                                    3.2, 3.7, 5.5, 5.2, 5.1, 5.7, 5.6, 4.8, 5.4, 6.3,
                                     6.5, 4.9, 5.0, 5.3, 5.0, 4.2, 4.1, 4.7, 3.5, 3.7,
                                    3.5, 4.0, 3.7, 3.6, 3.4, 3.3, 2.9, 2.1, 2.0, 2.1,
                                    2.1, 2.0, 1.8, 1.7
```

Negative correlation

> cor.test(bmi, sa)

```
Pearson's product-moment correlation

data: bmi and sa

t = -2.0845, df = 42, p-value = 0.04323

alternative hypothesis: true correlation is not equal to 0

95 percent confidence interval:
```

```
-0.55282250 -0.01024671
```

sample estimates:

cor

-0.3061956

• plot(sa, bmi)

Scatter plots of data with various correlation coefficients

Linear correlation

Linear correlation

Summary

- A measure of strength of association between 2 continuous variables
- Normally distributed data
- Only applicable to a LINEAR relationship
- Correlation is not necessarily a measure of causeand-effect relationship