Comparing two groups: categorical data

Tuan V. Nguyen

Professor and NHMRC Senior Research Fellow
Garvan Institute of Medical Research
University of New South Wales
Sydney, Australia

What we are going to learn ...

- Examples (RCT, CC, Cohort)
- Two proportions
- Metrics of effect: d, RR, OR
- Applicability of d, RR, OR
- D and z-test
- NNT
- Measure of association: OR
- Small sample size: Fisher's exact test

Zoledronate and fracture

Table 2. Rates of Fracture and Death in the Study Groups.*

Variable	Placebo	Zoledronic Acid	Hazard Ratio (95\% CI)	P Value
Fracture - no. (cumulative \%)				
Any	$139(13.9)$	$92(8.6)$	$0.65(0.50-0.84)$	0.001
Nonvertebral	$107(10.7)$	$79(7.6)$	$0.73(0.55-0.98)$	0.03
Hip	$33(3.5)$	$23(2.0)$	$0.70(0.41-1.19)$	0.18
Vertebral	$39(3.8)$	$21(1.7)$	$0.54(0.32-0.92)$	0.02
Death —no. (\%)	$141(13.3)$	$101(9.6)$	$0.72(0.56-0.93)$	0.01

* Rates of clinical fracture were calculated by Kaplan-Meier methods at 24 months and therefore are not simple percentages. There were 1062 patients in the placebo group, and 1065 in the zoledronic acid group. Because of variable followup, the number and percentage of patients who died are provided on the basis of 1057 patients in the placebo group and 1054 patients in the zoledronic acid group in the safety population.

Randomized controlled clinical trial

Placebo $\mathbf{n}=1062$, Zoledronate $\mathbf{n}=1065$

Length of follow-up: 3 years
Lyles KW, et al. Zoledronic acid and clinical fractures and mortality after hip fracture. N Engl J Med 2007;357. DOI: 10.1056/NEJMoa074941

Smoking and lung cancer

	Lung Cancer	Controls
Smokers	647	622
Non-smokers	2	27

R Doll and B Hill. BMJ 1950; ii:739-748

Sir Richard Doll (1912-2005) http://en.wikipedia.org/wiki/Richard_Doll

Is there an association between smoking and lung cancer?

Mortality in the Titanic incident

Class	Dead	Survived	Total
I	123	$200(62 \%)$	323
II	158	$119(43 \%)$	277
III	528	$181(26 \%)$	709
Total	809	$500(38 \%)$	1309

http://lib.stat.cmu.edu/S/Harrell/data/descriptions/titanic3info.txt
Is there an association between passenger class and and death?

What are common characteristics of these data?

- Binary outcome: yes/no; dead / survived
- Proportion / percent / probability

Sample vs population

	Sample		Population	
	Group 1	Group 2	Group 1	Group 2
N	n_{1}	n_{2}	Infinite	Infinite
Probability of outcome	p_{1}	p_{2}	$\pi_{1}=?$	$\pi_{2}=?$
Difference	$d=p_{1}-p_{1}$		$\delta=\pi_{1}-\pi_{2}$	
Status	Known		Unknown	

Aim: use sample data d to estimate population parameter δ

Metrics of effect

- Absolute difference (d)
- Relative risk (RR; risk ratio)
- Odds ratio (OR)
- Number needed to treat (NNT)

The choice is dependent on study design

Absolute difference d

Outcome	Placebo	Treatment		Outcome	Group 1	Group 2
Any fracture	139	92		Bad	a	b
Non-fracture	923	973		Good	c	D
N	1062	1065		N	$\mathrm{~N}_{1}$	$\mathrm{~N}_{2}$

Absolute difference

$$
\begin{array}{ll}
p_{1}=139 / 1062=0.131 & p_{1}=a / N_{1} \\
p_{2}=92 / 1065=0.086 & p_{2}=b / N_{2} \\
d=p_{2}-p_{1}=-0.044 & d=p_{2}-p_{1}
\end{array}
$$

Number needed to treat - NNT

Outcome	Placebo	Treatment
Any fracture	139	92
Non-fracture	923	973
N	1062	1065

Outcome	Group 1	Group 2
Bad	a	b
Good	c	D
N	N_{1}	\mathbf{N}_{2}

Number needed to treat

$$
\begin{aligned}
& p_{1}=139 / 1062=0.131 \\
& p_{2}=92 / 1065=0.086 \\
& d=p_{2}-p_{1}=-0.044 \\
& N N T=1 / d=22
\end{aligned}
$$

$$
\begin{aligned}
& p_{1}=a / N_{1} \\
& p_{2}=b / N_{2} \\
& d=p_{2}-p_{1} \\
& N N T=1 / d
\end{aligned}
$$

Relative risk - RR

Outcome	Placebo	Treatment
Any fracture	139	92
Non-fracture	923	973
N	1062	1065

Outcome	Group 1	Group 2
Bad	a	b
Good	c	D
N	\mathbf{N}_{1}	\mathbf{N}_{2}

Relative risk

$$
\begin{aligned}
& p_{1}=139 / 1062=0.131 \\
& p_{2}=92 / 1065=0.086 \\
& R R=p_{2} / p_{1}=0.66
\end{aligned}
$$

$$
\begin{aligned}
& p_{1}=a / N_{1} \\
& p_{2}=b / N_{2} \\
& R R=p_{2} / p_{1}
\end{aligned}
$$

Meaning of RR

- Risk of developing disease

Treatment:

$$
\begin{aligned}
& p_{1}=a / N_{1} \\
& p_{2}=b / N_{2}
\end{aligned}
$$

Placebo:

- Relative risk

$$
R R=p_{1} / p_{2}
$$

- Implications:
$R R=1$, there is no effect
$R R<1$, the treatment is beneficial.
$R R>1$, the treatment is harmful.

Odds ratio - OR

Outcome	Placebo	Treatment
Any fracture	139	92
Non-fracture	923	973
N	1062	1065

Outcome	Group 1	Group 2
Bad	a	b
Good	c	D
N	N_{1}	\mathbf{N}_{2}

Odds ratio

$$
\begin{aligned}
& \text { odds }_{1}=139 / 923=0.140 \\
& \text { odds }_{2}=92 / 973=0.094 \\
& \mathrm{OR}=\mathrm{odds}_{2} / \mathrm{odds}_{1}=0.68
\end{aligned}
$$

$$
\begin{aligned}
& \text { odds }_{1}=\mathrm{a} / \mathrm{c} \\
& \text { odds }_{2}=\mathrm{b} / \mathrm{d} \\
& \mathrm{OR}=\mathrm{odds}_{2} / \mathrm{odds}_{1} \\
& \mathrm{OR}=(\mathrm{a} \times \mathrm{d}) /(\mathrm{b} \times \mathrm{c})
\end{aligned}
$$

Meaning of OR

- $O R=1$, there is no association
- $\mathrm{OR}<1$, the risk factor is associated with reduced disease risk
- $O R>1$, the risk factor is associated with increased disease risk

Study design - time aspect

PAST

PRESENT

Cross-
sectional study

\longleftarrow| Case-control |
| :---: |
| study |

> Cohort study, RCT
> (longitudinal, prospective)

Appropriateness of effect size

Odds ratio

Problem and solution

- Finding an estimate for $\mathrm{d}, \mathrm{OR}, \mathrm{RR}$ is easy
- Finding the 95% confidence interval is harder
- We can however use R

Example of d

	Treatment	Control
Disease	a	b
No disease	c	d
Sample size	N_{1}	N_{2}

	Zole	Placebo
Fracture	92	139
No fracture	973	923
Sample size	1065	1062

$p_{1}=\frac{a}{N_{1}} \quad p_{2}=\frac{b}{N_{2}}$
$d=p_{1}-p_{2}$
$\operatorname{SE}(d)=\sqrt{\frac{p_{1}\left(1-p_{1}\right)}{N_{1}}+\frac{p_{1}\left(1-p_{2}\right)}{N_{2}}}$

$$
\begin{gathered}
S E(d)=\sqrt{\frac{0.131(0.869)}{1065}+\frac{0.044(0.956)}{1062}}=0.0134 \\
95 \% C I(d)=0.044 \mp 1.96 \times 0.0134 \\
95 \% C I(d)=0.018,0.081
\end{gathered}
$$

Example of NNT

$$
d=\frac{92}{1065}-\frac{139}{1062}=0.131-0.086=0.044
$$

$S E(d)=\sqrt{\frac{0.131(0.869)}{1065}+\frac{0.044(0.956)}{1062}}=0.0134$
$95 \% C I(d)=0.044 \mp 1.96 \times 0.0134$ $95 \% C I(d)=0.018,0.081$

- $N N T=1 / 0.044=22$
- $95 \% \mathrm{Cl}$ for NNT:
$-1 / 0.018=55$
$-1 / 0.081=14$

Example of RR

	Treatment	Control
Disease	a	b
No disease	c	d
Sample size	N_{1}	N_{2}

	Zole	Placebo
Fracture	92	139
No fracture	973	923
Sample size	1065	1062

$R R=\frac{a / N_{1}}{b / N_{2}}$
$L R R=\log (R R)$
$S E(L R R)=\sqrt{\frac{1}{a}-\frac{1}{N_{1}}+\frac{1}{b}-\frac{1}{N_{2}}}$
$95 \% C I(L R R)=L R R \mp 1.96 S E(L R R)$
$95 \% C I(R R)=e^{L R R \neq 1.96 S E(L R R)}$

$$
\begin{aligned}
& R R=\frac{92 / 1065}{139 / 1062}=\frac{0.086}{0.131}=0.66 \\
& L R R=\log (0.66)=-0.4155 \\
& S E(L R R)=\sqrt{\frac{1}{92}-\frac{1}{1065}+\frac{1}{139}-\frac{1}{1062}}=0.127 \\
& 95 \% C I(L R R)=-0.416 \mp 1.96 \times 0.127 \\
& \begin{array}{c}
95 \% C I(R R)=e^{-0.416 \mp 1.96 \times 0.127} \\
=0.514 \text { to } 0.847
\end{array}
\end{aligned}
$$

Example of OR

	Disease	No disease
Risk+ve	a	b
Risk-ve	c	d

	Lung K	Control
Smoking	647	622
No smoking	2	27

$$
\begin{aligned}
& O R=\frac{a d}{b c} \\
& L O R=\log (O R) \\
& S E(L O R)=\sqrt{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}} \\
& 95 \% C I(L O R)=L O R \mp 1.96 S E(L O R) \\
& 95 \% C I(O R)=e^{\text {LOR } 1.96 S E(L O R)}
\end{aligned}
$$

Introducing epiR package

	Disease	No disease
Exposed (treatment)	a	b
Not exposed (control)	c	d

epi.2by2(a, b, c, d, method = "xxx", conf.level = 0.95)
Where method = "cohort.count"
"case.control"
"cross.sectional"

Application of epiR - RCT study

	Fracture	No frcture
Zoleronate	92	973
Placebo	139	923

library(epiR)

epi.2by2(92, 973, 139, 923, method="cohort.count", conf.level=0.95)

Point estimates and 95 \% CIs:

```
Inc risk ratio
Odds ratio
0.66 (0.51, 0.85)
Attrib risk *
Attrib risk in population *
Attrib fraction in exposed (%)
Attrib fraction in population (%)
0.63 (0.48, 0.83)
-4.45 (-7.09, -1.81)
-2.23 (-4.65, 0.19)
-51.51 (-94.42, -18.08)
-20.52 (-33.15, -9.08)
```

 * Cases per 100 population units

Application of epiR - Case-control study

	K	Not K
Smoking	647	622
No smoking	2	27

	Disease +	Disease -	Total	Prevalence *	Odds
Exposed +	647	622	1269	51.0	1.040
Exposed	2	27	29	6.9	0.074
Total	649	649	1298	50.0	1.000

Point estimates and 95 \% CIs:

Odds ratio

Attrib prevalence *
Attrib prevalence in population *
Attrib fraction (est) in exposed
Attrib fraction (est) in population (\%) 92.59 (68.98, 98.23)

14.04 (3.33, 59.3)

44.09 (34.46, 53.71)
43.1 (33.49, 52.72)
92.88 (69.93, 98.31)

Application of epiR - Titanic accident

Passenger class	Dead	Survived
Economy	528	181
Not economy	281	319

> epi.2by2(528,181,281,319, method="cross.sectional", conf.level=0.95)

Point estimates and 95 \% CIs:

Prevalence ratio
Odds ratio
Attrib prevalence *
Attrib prevalence in population *
Attrib fraction in exposed (\%)
Attrib fraction in population (\%)

```
1.59 (1.45, 1.75)
3.31 (2.62, 4.18)
27.64 (22.51, 32.76)
14.97 (10.19, 19.75)
37.11 (30.81, 42.84)
24.22 (19.25, 28.88)
```


Summary

RCT / prospective study

Odds ratio
Prevalence ratio
D

Odds ratio NNT

Relative risk

D

Odds ratio

Optional - Bayesian analysis of 2 proportions

	Side effects	None
Drug A	11	9
Drug B	5	15

- Are the effects the same for the $\mathbf{2}$ groups?

Frequentist analysis

- Let $X \sim \operatorname{Binomial}\left(n_{1}, r_{1}\right)$ and $p_{1}=X / n_{1}$
- Let $Y \sim \operatorname{Binomial}\left(n_{2}, \pi_{2}\right)$ and $p_{2}=Y / n_{2}$
- Consider the hypothesis $\pi_{1}=\pi_{2}$
- The score statistic is:

$$
T S=\frac{\hat{p}_{1}-\hat{p}_{2}}{\sqrt{\hat{p}(1-\hat{p})\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}}
$$

where $\hat{p}=\frac{X+Y}{n_{1}+n_{2}}$ is the estimate of the common proportion under the null hypothesis
This statistic is normally distributed for large n_{1} and n_{2}.

Frequentist analysis

- $p_{1}=0.55, p_{2}=5 / 20=0.25, p=16 / 40=0.4$

Test statistic

$$
\frac{.55-.25}{\sqrt{.4 \times .6 \times(1 / 20+1 / 20)}}=1.61
$$

Bayesian analysis

- Consider putting independent Beta(α_{1}, β_{1}) and Beta $\left(\alpha_{2}, \beta_{2}\right)$ priors on p_{1} and p_{2} respectively
- Then the posterior is

$$
\pi\left(p_{1}, p_{2}\right) \propto p_{1}^{x+\alpha_{1}-1}\left(1-p_{1}\right)^{n_{1}+\beta_{1}-1} \times p_{2}^{y+\alpha_{2}-1}\left(1-p_{2}\right)^{n_{2}+\beta_{2}-1}
$$

- Hence under this (potentially naive) prior, the posterior for p_{1} and p_{2} are independent betas
- The easiest way to explore this posterior is via Monte Carlo simulation

R analysis

x = 11; n1 = 20; alpha1 = 1; beta1 = 1
$y=5 ; n 2=20 ;$ alpha2 = 1; beta2 = 1
p1 = rbeta(1000, $x+$ alpha1, $n-x+b e t a 1)$
p2 $=$ rbeta(1000, $y+$ alpha2, $n-y+b e t a 2)$
rd = p2 - p1
plot(density (rd))
quantile(rd, c(.025, .975))
mean (rd)
median(rd)

