Comparing two groups: categorical data

Tuan V. Nguyen Professor and NHMRC Senior Research Fellow Garvan Institute of Medical Research University of New South Wales Sydney, Australia

What we are going to learn ...

- Examples (RCT, CC, Cohort)
- Two proportions
- Metrics of effect: d, RR, OR
- Applicability of d, RR, OR
- D and z-test
- NNT
- Measure of association: OR
- Small sample size: Fisher's exact test

Zoledronate and fracture

Table 2. Rates of Fracture and Death in the Study Groups.*					
Variable	Placebo	Zoledronic Acid	Hazard Ratio (95% CI)	P Value	
Fracture — no. (cumulative %	5)				
Any	139 (13.9)	92 (8.6)	0.65 (0.50-0.84)	0.001	
Nonvertebral	107 (10.7)	79 (7.6)	0.73 (0.55-0.98)	0.03	
Hip	33 (3.5)	23 (2.0)	0.70 (0.41-1.19)	0.18	
Vertebral	39 (3.8)	21 (1.7)	0.54 (0.32-0.92)	0.02	
Death — no. (%)	141 (13.3)	101 (9.6)	0.72 (0.56-0.93)	0.01	

* Rates of clinical fracture were calculated by Kaplan–Meier methods at 24 months and therefore are not simple percentages. There were 1062 patients in the placebo group, and 1065 in the zoledronic acid group. Because of variable followup, the number and percentage of patients who died are provided on the basis of 1057 patients in the placebo group and 1054 patients in the zoledronic acid group in the safety population.

Randomized controlled clinical trial

Placebo n = 1062, Zoledronate n = 1065

Length of follow-up: 3 years

Lyles KW, et al. Zoledronic acid and clinical fractures and mortality after hip fracture. *N Engl J Med* 2007;357. DOI: 10.1056/NEJMoa074941

Smoking and lung cancer

	Lung Cancer	Controls
Smokers	647	622
Non-smokers	2	27

R Doll and B Hill. BMJ 1950; ii:739-748

Sir Richard Doll (1912 – 2005)

http://en.wikipedia.org/wiki/Richard_Doll

Is there an association between smoking and lung cancer?

Mortality in the Titanic incident

Class	Dead	Survived	Total
Ι	123	200 (62%)	323
Ι	158	119 (43%)	277
	528	181 (26%)	709
Total	809	500 (38%)	1309

http://lib.stat.cmu.edu/S/Harrell/data/descriptions/titanic3info.txt

Is there an association between passenger class and and death?

What are common characteristics of these data?

- Binary outcome: yes/no; dead / survived
- Proportion / percent / probability

Sample vs population

	Sample		Population	
	Group 1	Group 2	Group 1	Group 2
Ν	n ₁	n ₂	Infinite	Infinite
Probability of outcome	p ₁	p ₂	π ₁ = ?	π ₂ =?
Difference	$d = p_1 - p_1$		δ = π	$_{1} - \pi_{2}$
Status	Kno	own	Unkr	nown

Aim: use sample data d to estimate population parameter δ

Metrics of effect

- Absolute difference (d)
- Relative risk (RR; risk ratio)
- Odds ratio (OR)
- Number needed to treat (NNT)

The choice is dependent on <u>study design</u>

Absolute difference d

Outcome	Placebo	Treatment	Outcome	Group 1	Group 2
Any fracture	139	92	Bad	а	b
Non-fracture	923	973	Good	С	D
Ν	1062	1065	Ν	N ₁	N ₂

Absolute difference

- $p_1 = 139 / 1062 = 0.131$ $p_2 = 92 / 1065 = 0.086$ $p_2 = b / N_2$
- $d = p_2 p_1 = -0.044$ $d = p_2 p_1$

Number needed to treat – NNT

Outcome	Placebo	Treatment	Outcome	Group 1	Group 2
Any fracture	139	92	Bad	а	b
Non-fracture	923	973	Good	С	D
Ν	1062	1065	Ν	N ₁	N ₂

Number needed to treat

NNT = 1 / d = 22	NNT = 1 / d
$d = p_2 - p_1 = -0.044$	$d = p_2 - p_1$
p ₂ = 92 / 1065 = 0.086	$p_2 = b / N_2$
p ₁ = 139 / 1062 = 0.131	$p_1 = a / N_1$

Relative risk - *RR*

Outcome	Placebo	Treatment	Outcome	Group 1	Group 2
Any fracture	139	92	Bad	а	b
Non-fracture	923	973	Good	С	D
Ν	1062	1065	Ν	N ₁	N ₂

Relative risk

 $p_1 = 139 / 1062 = 0.131$ $p_2 = 92 / 1065 = 0.086$ $RR = p_2 / p_1 = 0.66$ $p_1 = a / N_1$ $p_2 = b / N_2$ $RR = p_2 / p_1$

Meaning of RR

- Risk of developing disease Treatment: $p_1 = a / N_1$ Placebo: $p_2 = b / N_2$
- Relative risk

 $RR = p_1 / p_2$

• Implications:

RR = 1, there is no effect RR < 1, the treatment is beneficial. RR > 1, the treatment is harmful.

Odds ratio - OR

Outcome	Placebo	Treatment	Outcome	Group 1	Group 2
Any fracture	139	92	Bad	а	b
Non-fracture	923	973	Good	С	D
Ν	1062	1065	Ν	N ₁	N ₂

Odds ratio

 $odds_1 = 139 / 923 = 0.140$

 $odds_2 = 92 / 973 = 0.094$

 $OR = odds_2 / odds_1 = 0.68$

 $odds_1 = a / c$

 $odds_2 = b / d$

 $OR = odds_2 / odds_1$

OR = (a x d) / (b x c)

Meaning of OR

- OR = 1, there is no association
- OR < 1, the risk factor is associated with *reduced* disease risk
- OR > 1, the risk factor is associated with *increased* disease risk

Study design – time aspect

Appropriateness of effect size

Problem and solution

- Finding an estimate for d, OR, RR is easy
- Finding the 95% confidence interval is harder
- We can however use R

Example of *d*

	Treatment	Control
Disease	а	b
No disease	С	d
Sample size	N ₁	N ₂

	Zole	Placebo
Fracture	92	139
No fracture	973	923
Sample size	1065	1062

$$p_{1} = \frac{a}{N_{1}} \qquad p_{2} = \frac{b}{N_{2}}$$

$$d = p_{1} - p_{2}$$

$$SE(d) = \sqrt{\frac{p_{1}(1 - p_{1})}{N_{1}} + \frac{p_{1}(1 - p_{2})}{N_{2}}}$$

$$95\% CI = d \mp 1.96SE(d)$$

$$d = \frac{92}{1065} - \frac{139}{1062} = 0.131 - 0.086 = 0.044$$
$$SE(d) = \sqrt{\frac{0.131(0.869)}{1065} + \frac{0.044(0.956)}{1062}} = 0.0134$$
$$95\% CI(d) = 0.044 \mp 1.96 \times 0.0134$$
$$95\% CI(d) = 0.018, 0.081$$

Example of NNT

$$d = \frac{92}{1065} - \frac{139}{1062} = 0.131 - 0.086 = 0.044$$
$$SE(d) = \sqrt{\frac{0.131(0.869)}{1065} + \frac{0.044(0.956)}{1062}} = 0.0134$$
$$95\% CI(d) = 0.044 \mp 1.96 \times 0.0134$$
$$95\% CI(d) = 0.018, 0.081$$

- NNT = 1 / 0.044 = 22
- 95% CI for NNT:
 - -1/0.018 = 55
 - -1/0.081 = 14

Example of RR

	Treatment	Control
Disease	а	b
No disease	С	d
Sample size	N ₁	N ₂

$RR = \frac{a / N_1}{b / N_2}$					
$LRR = \log(R)$	R)				
SF(IRR) -	1	1	1	1	
SL(LIUV) = 1	a	N_1	b	N_2	
95% CI(LRR)=	= Lł	$RR \mp 1$.965	SE(LRF	?)
95% CI(RR) =	$= e^{Ll}$	<i>RR</i> ∓1.96	SE(LR	(R)	

	Zole	Placebo
Fracture	92	139
No fracture	973	923
Sample size	1065	1062

$$RR = \frac{92/1065}{139/1062} = \frac{0.086}{0.131} = 0.66$$
$$LRR = \log(0.66) = -0.4155$$
$$SE(LRR) = \sqrt{\frac{1}{92} - \frac{1}{1065} + \frac{1}{139} - \frac{1}{1062}} = 0.127$$
$$95\% CI(LRR) = -0.416 \mp 1.96 \times 0.127$$
$$95\% CI(RR) = e^{-0.416 \mp 1.96 \times 0.127}$$
$$= 0.514 \text{ to } 0.847$$

Example of OR

	Disease	No disease
Risk +ve	а	b
Risk –ve	С	d

	Lung K	Control
Smoking	647	622
No smoking	2	27

$$OR = \frac{ad}{bc}$$

 $LOR = \log(OR)$

$$SE(LOR) = \sqrt{\frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}}$$

 $95\% CI(LOR) = LOR \mp 1.96SE(LOR)$

 $95\% CI(OR) = e^{LOR \mp 1.96SE(LOR)}$

$$OR = \frac{647 \times 27}{622 \times 2} = 14.04$$

$$LOR = \log(14.04) = 2.64$$

$$SE(LOR) = \sqrt{\frac{1}{647} + \frac{1}{622} + \frac{1}{2} + \frac{1}{27}} = 0.735$$

$$95\% CI(LOR) = 2.642 \mp 1.96 \times 0.735$$

$$95\% CI(OR) = e^{2.64 \mp 1.96 \times 0.735}$$

$$= 3.32 \text{ to } 59.03$$

Introducing epiR package

	Disease	No disease
Exposed (treatment)	а	b
Not exposed (control)	С	d

epi.2by2(a, b, c, d, method = "xxx", conf.level = 0.95)

Where method = "cohort.count" "case.control" "cross.sectional"

Application of epiR – RCT study

	Fracture	No frcture
Zoleronate	92	973
Placebo	139	923

library(epiR)

epi.2by2(92, 973, 139, 923, method="cohort.count",

conf.level=0.95)

> epi.2by2(92,	973, 139,	923, method =	"cohort.cou	<pre>nt", conf.level =</pre>	0.95)
D:	isease +	Disease -	Total	Inc risk *	Odds
Exposed +	92	973	1065	8.64	0.0946
Exposed -	139	923	1062	13.09	0.1506
Total	231	1896	2127	10.86	0.1218
Point estimates and 95 % CIs:					
Inc risk ratio			0.66 (0.51,	0.85)	
Odds ratio			0.63 (0.48,	0.83)	
Attrib risk *			-4.45 (-7.0	9, -1.81)	
Attrib risk in	population	1 *	-2.23 (-4.6	5, 0.19)	
Attrib fraction	n in expose	ed (%)	-51.51 (-94	.42, -18.08)	
Attrib fraction	n in popula	ation (%)	-20.52 (-33	.15, -9.08)	
* Cases per 100 population units					

Application of epiR – Case-control study

			К	Not K	
Smoking			647	622	
No smoking			2	27	
> epi.2by2(64	47,622,2,27	, method="cas	e.control", cor	nf.level=0.95)	
Dig	sease +	Disease -	Total	Prevalence *	Odds
Exposed +	647	622	1269	51.0	1.040
Exposed -	2	27	29	6.9	0.074
Total	649	649	1298	50.0	1.000
Point estimates and 95 % CIs:					
Odds ratio			14.04 (3.3	33, 59.3)	
Attrib preval	lence *		44.09 (34.	.46, 53.71)	
Attrib prevalence in population *		43.1 (33.4	19, 52.72)		
Attrib fract	rib fraction (est) in exposed (%)) 92.88 (69.	.93, 98.31)	
Attrib fract	ion (est) i	n population	(%) 92.59 (68.	.98, 98.23)	

Application of epiR – Titanic accident

Passenger class	Dead	Survived		
Economy	528	181		
Not economy	281	319		
<pre>> epi.2by2(528,181,281,319, method="cross.sectional", conf.level=0.95) Point estimates and 95 % CIs:</pre>				
Prevalence ratio	1.59 (1.45, 1.75)		
Odds ratio	3.31 (2.62, 4.18)		
Attrib prevalence *	27.64	(22.51, 32.76)		
Attrib prevalence in populat	ion * 14.97	(10.19, 19.75)		
Attrib fraction in exposed (%)		(30.81, 42.84)		
Attrib fraction in populatio	n (%) 24.22	(19.25, 28.88)		

Summary

Optional – Bayesian analysis of 2 proportions

	Side effects	None
Drug A	11	9
Drug B	5	15

• Are the effects the same for the 2 groups?

Frequentist analysis

- Let X ~ Binomial(n_1 , π_1) and $p_1 = X / n_1$
- Let $\mathbf{Y} \sim \text{Binomial}(\mathbf{n}_2, \pi_2)$ and $\mathbf{p}_2 = \mathbf{Y} / \mathbf{n}_2$
- Consider the hypothesis $\pi_1 = \pi_2$
- The score statistic is:

$$TS = rac{\hat{p}_1 - \hat{p}_2}{\sqrt{\hat{p}(1-\hat{p})(rac{1}{n_1}+rac{1}{n_2})}}$$

where $\hat{p} = \frac{X+Y}{n_1+n_2}$ is the estimate of the common proportion under the null hypothesis This statistic is normally distributed for large n_1 and n_2 .

Frequentist analysis

• $p_1 = 0.55$, $p_2 = 5/20 = 0.25$, p = 16/40 = 0.4

Test statistic

$$rac{.55 - .25}{\sqrt{.4 imes .6 imes (1/20 + 1/20)}} = 1.61$$

Bayesian analysis

- Consider putting independent Beta(α_1 , β_1) and Beta(α_2 , β_2) priors on p_1 and p_2 respectively
- Then the posterior is

$$\pi(p_1,p_2) \propto p_1^{x+lpha_1-1} (1-p_1)^{n_1+eta_1-1} imes p_2^{y+lpha_2-1} (1-p_2)^{n_2+eta_2-1}$$

- Hence under this (potentially naive) prior, the posterior for p_1 and p_2 are independent betas
- The easiest way to explore this posterior is via Monte Carlo simulation

R analysis

- x = 11; n1 = 20; alpha1 = 1; beta1 = 1
- y = 5; n2 = 20; alpha2 = 1; beta2 = 1
- p1 = rbeta(1000, x + alpha1, n x + beta1)
 p2 = rbeta(1000, y + alpha2, n y + beta2)
 rd = p2 p1

```
plot(density(rd))
```

```
quantile(rd, c(.025, .975))
```

```
mean(rd)
```

```
median(rd)
```